Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- # Encode infinite number of dimensions of numbers to one number
- # INPUT:
- # x = -infinity to infinity up by 1
- # args[0:infinity]= every number between -infinity and infinity
- # NO COLLISIONS
- def INFINITY_UNIQUE_NUMBER_SERIES(x, *args):
- if (len(args) > 0): return INFINITY_UNIQUE_NUMBER_SERIES((x * 2 - 1) * (2 ** args[0]), *args[1:])
- return x
Advertisement
Comments
-
- X = (y * 2 - 1) * (2^z) solve for z and y given x
- z = log2(x / y * 2 - 1)
- y = (X / (2 ^ z) + 1 / 2)
- z = log2(x / (x / (2 ^ z) + 1 / 2) * 2 - 1)
- y = (x / (2 ^ z) + 1 / 2)
- z = log2(x / (X / (2 ^ log2(x / (X / (2 ^ z) + 1 / 2) * 2 - 1)) + 1 / 2) * 2 - 1)
- z = log2(x / (X / (2 ^ log2(x / (X / (2 ^ log2(x / (X / (2 ^ z) + 1 / 2) * 2 - 1)) + 1 / 2) * 2 - 1)) + 1 / 2) * 2 - 1)
- x = ((((y * 2 - 1) * (2^z)) * 2 - 1) * (2^e)) solve for z and y and e given x
- z = log2((((X / (2^e) + 1) / 2) / (2^z) + 1) / (2 * ((((X / (2^e) + 1) / 2) / (2^z) + 1) / 2)))
- y = (((X / (2^e) + 1) / 2) / (2^z) + 1) / 2
- e = log2((((X / (2^e) + 1) / 2) / (2^z) + 1) / (2 * y))
Add Comment
Please, Sign In to add comment
Advertisement