View difference between Paste ID: WZyx4Lhc and NeEv64aL
SHOW: | | - or go back to the newest paste.
1
#loading data set
2
data = iris
3
#details of data set
4
summary(data)
5
#display top 5 rows
6
head(data)
7
8
#writing a function to normalise a column
9
normalise = function(x){
10
  return ((x - min(x))/(max(x)-min(x)))
11
}
12
13
#yanking columns from the data set and normalizing them
14
data$Sepal.Length = normalise(data$Sepal.Length)
15
data$Sepal.Width = normalise(data$Sepal.Width)
16
data$Petal.Length = normalise(data$Petal.Length)
17
data$Petal.Width = normalise(data$Petal.Width)
18
19
#randomizing data to make a data set for training
20
ind = sample(1:nrow(data), size = 0.9*nrow(data), replace = FALSE )
21
training_data = data[ind,]
22
23
#creating testing data (500 IQ move)
24
test_data = data[-ind,]
25
26
#creating label for later verification (5th col of table)
27
test_data_label = test_data[,5]
28
29
#removing 5th column from test_data
30
test_data = test_data[-5]
31
32
#creating training data label
33
training_data_label = training_data[,5]
34
training_data = training_data[,-5]
35
36
#load package
37
library(class)
38
library(caret)
39
library(ggplot2)
40
41
#executing(implementing?) KNN algorithm
42
model = knn(training_data, test_data, training_data_label, k=11)
43
44
#comparing the model and the test data labels
45
model
46
test_data_label
47
48
#evaluating the performance of the model
49
confusionMatrix(model, test_data_label)
50
51
#there is another
52
53
#resetting training data
54
training_data = data[ind,]
55
56
#another model
57
model = train(Species ~., data = training_data, method = 'knn')
58
59
#another prediction
60
prediction = predict(model, test_data)
61
62
#evaluating the performance of the new model
63
confusionMatrix(prediction, test_data_label)
64