Advertisement
Guest User

dwdm-prac1-full

a guest
Jul 4th, 2024
27
0
10 days
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.57 KB | Cryptocurrency | 0 0
  1. #loading data set
  2. data = iris
  3. #details of data set
  4. summary(data)
  5. #display top 5 rows
  6. head(data)
  7.  
  8. #writing a function to normalise a column
  9. normalise = function(x){
  10. return ((x - min(x))/(max(x)-min(x)))
  11. }
  12.  
  13. #yanking columns from the data set and normalizing them
  14. data$Sepal.Length = normalise(data$Sepal.Length)
  15. data$Sepal.Width = normalise(data$Sepal.Width)
  16. data$Petal.Length = normalise(data$Petal.Length)
  17. data$Petal.Width = normalise(data$Petal.Width)
  18.  
  19. #randomizing data to make a data set for training
  20. ind = sample(1:nrow(data), size = 0.9*nrow(data), replace = FALSE )
  21. training_data = data[ind,]
  22.  
  23. #creating testing data (500 IQ move)
  24. test_data = data[-ind,]
  25.  
  26. #creating label for later verification (5th col of table)
  27. test_data_label = test_data[,5]
  28.  
  29. #removing 5th column from test_data
  30. test_data = test_data[-5]
  31.  
  32. #creating training data label
  33. training_data_label = training_data[,5]
  34. training_data = training_data[,-5]
  35.  
  36. #load package
  37. library(class)
  38. library(caret)
  39. library(ggplot2)
  40.  
  41. #executing(implementing?) KNN algorithm
  42. model = knn(training_data, test_data, training_data_label, k=11)
  43.  
  44. #comparing the model and the test data labels
  45. model
  46. test_data_label
  47.  
  48. #evaluating the performance of the model
  49. confusionMatrix(model, test_data_label)
  50.  
  51. #there is another
  52.  
  53. #resetting training data
  54. training_data = data[ind,]
  55.  
  56. #another model
  57. model = train(Species ~., data = training_data, method = 'knn')
  58.  
  59. #another prediction
  60. prediction = predict(model, test_data)
  61.  
  62. #evaluating the performance of the new model
  63. confusionMatrix(prediction, test_data_label)
  64.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement