Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- -- Two dashes start a one-line comment.
- --[[
- Adding two ['s and ]'s makes it a
- multi-line comment.
- --]]
- ----------------------------------------------------
- -- 1. Variables and flow control.
- ----------------------------------------------------
- num = 42 -- All numbers are doubles.
- -- Don't freak out, 64-bit doubles have 52 bits for
- -- storing exact int values; machine precision is
- -- not a problem for ints that need < 52 bits.
- s = 'walternate' -- Immutable strings like Python.
- t = "double-quotes are also fine"
- u = [[ Double brackets
- start and end
- multi-line strings.]]
- t = nil -- Undefines t; Lua has garbage collection.
- -- Blocks are denoted with keywords like do/end:
- while num < 50 do
- num = num + 1 -- No ++ or += type operators.
- end
- -- If clauses:
- if num > 40 then
- print('over 40')
- elseif s ~= 'walternate' then -- ~= is not equals.
- -- Equality check is == like Python; ok for strs.
- io.write('not over 40\n') -- Defaults to stdout.
- else
- -- Variables are global by default.
- thisIsGlobal = 5 -- Camel case is common.
- -- How to make a variable local:
- local line = io.read() -- Reads next stdin line.
- -- String concatenation uses the .. operator:
- print('Winter is coming, ' .. line)
- end
- -- Undefined variables return nil.
- -- This is not an error:
- foo = anUnknownVariable -- Now foo = nil.
- aBoolValue = false
- -- Only nil and false are falsy; 0 and '' are true!
- if not aBoolValue then print('twas false') end
- -- 'or' and 'and' are short-circuited.
- -- This is similar to the a?b:c operator in C/js:
- ans = aBoolValue and 'yes' or 'no' --> 'no'
- karlSum = 0
- for i = 1, 100 do -- The range includes both ends.
- karlSum = karlSum + i
- end
- -- Use "100, 1, -1" as the range to count down:
- fredSum = 0
- for j = 100, 1, -1 do fredSum = fredSum + j end
- -- In general, the range is begin, end[, step].
- -- Another loop construct:
- repeat
- print('the way of the future')
- num = num - 1
- until num == 0
- ----------------------------------------------------
- -- 2. Functions.
- ----------------------------------------------------
- function fib(n)
- if n < 2 then return 1 end
- return fib(n - 2) + fib(n - 1)
- end
- -- Closures and anonymous functions are ok:
- function adder(x)
- -- The returned function is created when adder is
- -- called, and remembers the value of x:
- return function (y) return x + y end
- end
- a1 = adder(9)
- a2 = adder(36)
- print(a1(16)) --> 25
- print(a2(64)) --> 100
- -- Returns, func calls, and assignments all work
- -- with lists that may be mismatched in length.
- -- Unmatched receivers are nil;
- -- unmatched senders are discarded.
- x, y, z = 1, 2, 3, 4
- -- Now x = 1, y = 2, z = 3, and 4 is thrown away.
- function bar(a, b, c)
- print(a, b, c)
- return 4, 8, 15, 16, 23, 42
- end
- x, y = bar('zaphod') --> prints "zaphod nil nil"
- -- Now x = 4, y = 8, values 15..42 are discarded.
- -- Functions are first-class, may be local/global.
- -- These are the same:
- function f(x) return x * x end
- f = function (x) return x * x end
- -- And so are these:
- local function g(x) return math.sin(x) end
- local g = function (x) return math.sin(x) end
- -- Trig funcs work in radians, by the way.
- -- Calls with one string param don't need parens:
- print 'hello' -- Works fine.
- ----------------------------------------------------
- -- 3. Tables.
- ----------------------------------------------------
- -- Tables = Lua's only compound data structure;
- -- they are associative arrays.
- -- Similar to php arrays or js objects, they are
- -- hash-lookup dicts that can also be used as lists.
- -- Using tables as dictionaries / maps:
- -- Dict literals have string keys by default:
- t = {key1 = 'value1', key2 = false}
- -- String keys can use js-like dot notation:
- print(t.key1) -- Prints 'value1'.
- t.newKey = {} -- Adds a new key/value pair.
- t.key2 = nil -- Removes key2 from the table.
- -- Literal notation for any (non-nil) value as key:
- u = {['@!#'] = 'qbert', [{}] = 1729, [6.28] = 'tau'}
- print(u[6.28]) -- prints "tau"
- -- Key matching is basically by value for numbers
- -- and strings, but by identity for tables.
- a = u['@!#'] -- Now a = 'qbert'.
- b = u[{}] -- We might expect 1729, but it's nil:
- -- b = nil since the lookup fails. It fails
- -- because the key we used is not the same object
- -- as the one used to store the original value. So
- -- strings & numbers are more portable keys.
- -- A one-table-param function call needs no parens:
- function h(x) print(x.key1) end
- h{key1 = 'Sonmi~451'} -- Prints 'Sonmi~451'.
- for key, val in pairs(u) do -- Table iteration.
- print(key, val)
- end
- -- _G is a special table of all globals.
- print(_G['_G'] == _G) -- Prints 'true'.
- -- Using tables as lists / arrays:
- -- List literals implicitly set up int keys:
- v = {'value1', 'value2', 1.21, 'gigawatts'}
- for i = 1, #v do -- #v is the size of v for lists.
- print(v[i]) -- Indices start at 1 !! SO CRAZY!
- end
- -- A 'list' is not a real type. v is just a table
- -- with consecutive integer keys, treated as a list.
- ----------------------------------------------------
- -- 3.1 Metatables and metamethods.
- ----------------------------------------------------
- -- A table can have a metatable that gives the table
- -- operator-overloadish behavior. Later we'll see
- -- how metatables support js-prototypey behavior.
- f1 = {a = 1, b = 2} -- Represents the fraction a/b.
- f2 = {a = 2, b = 3}
- -- This would fail:
- -- s = f1 + f2
- metafraction = {}
- function metafraction.__add(f1, f2)
- sum = {}
- sum.b = f1.b * f2.b
- sum.a = f1.a * f2.b + f2.a * f1.b
- return sum
- end
- setmetatable(f1, metafraction)
- setmetatable(f2, metafraction)
- s = f1 + f2 -- call __add(f1, f2) on f1's metatable
- -- f1, f2 have no key for their metatable, unlike
- -- prototypes in js, so you must retrieve it as in
- -- getmetatable(f1). The metatable is a normal table
- -- with keys that Lua knows about, like __add.
- -- But the next line fails since s has no metatable:
- -- t = s + s
- -- Class-like patterns given below would fix this.
- -- An __index on a metatable overloads dot lookups:
- defaultFavs = {animal = 'gru', food = 'donuts'}
- myFavs = {food = 'pizza'}
- setmetatable(myFavs, {__index = defaultFavs})
- eatenBy = myFavs.animal -- works! thanks, metatable
- -- Direct table lookups that fail will retry using
- -- the metatable's __index value, and this recurses.
- -- An __index value can also be a function(tbl, key)
- -- for more customized lookups.
- -- Values of __index,add, .. are called metamethods.
- -- Full list. Here a is a table with the metamethod.
- -- __add(a, b) for a + b
- -- __sub(a, b) for a - b
- -- __mul(a, b) for a * b
- -- __div(a, b) for a / b
- -- __mod(a, b) for a % b
- -- __pow(a, b) for a ^ b
- -- __unm(a) for -a
- -- __concat(a, b) for a .. b
- -- __len(a) for #a
- -- __eq(a, b) for a == b
- -- __lt(a, b) for a < b
- -- __le(a, b) for a <= b
- -- __index(a, b) <fn or a table> for a.b
- -- __newindex(a, b, c) for a.b = c
- -- __call(a, ...) for a(...)
- ----------------------------------------------------
- -- 3.2 Class-like tables and inheritance.
- ----------------------------------------------------
- -- Classes aren't built in; there are different ways
- -- to make them using tables and metatables.
- -- Explanation for this example is below it.
- Dog = {} -- 1.
- function Dog:new() -- 2.
- newObj = {sound = 'woof'} -- 3.
- self.__index = self -- 4.
- return setmetatable(newObj, self) -- 5.
- end
- function Dog:makeSound() -- 6.
- print('I say ' .. self.sound)
- end
- mrDog = Dog:new() -- 7.
- mrDog:makeSound() -- 'I say woof' -- 8.
- -- 1. Dog acts like a class; it's really a table.
- -- 2. function tablename:fn(...) is the same as
- -- function tablename.fn(self, ...)
- -- The : just adds a first arg called self.
- -- Read 7 & 8 below for how self gets its value.
- -- 3. newObj will be an instance of class Dog.
- -- 4. self = the class being instantiated. Often
- -- self = Dog, but inheritance can change it.
- -- newObj gets self's functions when we set both
- -- newObj's metatable and self's __index to self.
- -- 5. Reminder: setmetatable returns its first arg.
- -- 6. The : works as in 2, but this time we expect
- -- self to be an instance instead of a class.
- -- 7. Same as Dog.new(Dog), so self = Dog in new().
- -- 8. Same as mrDog.makeSound(mrDog); self = mrDog.
- ----------------------------------------------------
- -- Inheritance example:
- LoudDog = Dog:new() -- 1.
- function LoudDog:makeSound()
- s = self.sound .. ' ' -- 2.
- print(s .. s .. s)
- end
- seymour = LoudDog:new() -- 3.
- seymour:makeSound() -- 'woof woof woof' -- 4.
- -- 1. LoudDog gets Dog's methods and variables.
- -- 2. self has a 'sound' key from new(), see 3.
- -- 3. Same as LoudDog.new(LoudDog), and converted to
- -- Dog.new(LoudDog) as LoudDog has no 'new' key,
- -- but does have __index = Dog on its metatable.
- -- Result: seymour's metatable is LoudDog, and
- -- LoudDog.__index = LoudDog. So seymour.key will
- -- = seymour.key, LoudDog.key, Dog.key, whichever
- -- table is the first with the given key.
- -- 4. The 'makeSound' key is found in LoudDog; this
- -- is the same as LoudDog.makeSound(seymour).
- -- If needed, a subclass's new() is like the base's:
- function LoudDog:new()
- newObj = {}
- -- set up newObj
- self.__index = self
- return setmetatable(newObj, self)
- end
- ----------------------------------------------------
- -- 4. Modules.
- ----------------------------------------------------
- --[[ I'm commenting out this section so the rest of
- -- this script remains runnable.
- -- Suppose the file mod.lua looks like this:
- local M = {}
- local function sayMyName()
- print('Hrunkner')
- end
- function M.sayHello()
- print('Why hello there')
- sayMyName()
- end
- return M
- -- Another file can use mod.lua's functionality:
- local mod = require('mod') -- Run the file mod.lua.
- -- require is the standard way to include modules.
- -- require acts like: (if not cached; see below)
- local mod = (function ()
- <contents of mod.lua>
- end)()
- -- It's like mod.lua is a function body, so that
- -- locals inside mod.lua are invisible outside it.
- -- This works because mod here = M in mod.lua:
- mod.sayHello() -- Says hello to Hrunkner.
- -- This is wrong; sayMyName only exists in mod.lua:
- mod.sayMyName() -- error
- -- require's return values are cached so a file is
- -- run at most once, even when require'd many times.
- -- Suppose mod2.lua contains "print('Hi!')".
- local a = require('mod2') -- Prints Hi!
- local b = require('mod2') -- Doesn't print; a=b.
- -- dofile is like require without caching:
- dofile('mod2') --> Hi!
- dofile('mod2') --> Hi! (runs again, unlike require)
- -- loadfile loads a lua file but doesn't run it yet.
- f = loadfile('mod2') -- Calling f() runs mod2.lua.
- -- loadstring is loadfile for strings.
- g = loadstring('print(343)') -- Returns a function.
- g() -- Prints out 343; nothing printed before now.
- --]]
- ----------------------------------------------------
- -- 5. References.
- ----------------------------------------------------
- --[[
- I was excited to learn Lua so I could make games
- with the Löve 2D game engine. That's the why.
- I started with BlackBulletIV's Lua for programmers.
- Next I read the official Programming in Lua book.
- That's the how.
- It might be helpful to check out the Lua short
- reference on lua-users.org.
- The main topics not covered are standard libraries:
- * string library
- * table library
- * math library
- * io library
- * os library
- By the way, this entire file is valid Lua; save it
- as learn.lua and run it with "lua learn.lua" !
- This was first written for tylerneylon.com, and is
- also available as a github gist. Have fun with Lua!
- --]]
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement