Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import time
- import cv2
- import numpy as np
- import numpy
- from deepsparse import Engine
- from yolov8.utils import xywh2xyxy, nms, draw_detections
- class YOLOv8_DeepSparse:
- def __init__(self, path, conf_thres=0.7, iou_thres=0.5):
- self.conf_threshold = conf_thres
- self.iou_threshold = iou_thres
- # Initialize model
- self.initialize_model(path)
- def __call__(self, image):
- return self.detect_objects(image)
- def initialize_model(self, path):
- self.session = Engine(path)
- # Get model info
- # self.get_input_details()
- # self.get_output_details()
- def detect_objects(self, image):
- input_tensor = self.prepare_input(image)
- # Perform inference on the image
- outputs = self.inference(input_tensor)
- self.boxes, self.scores, self.class_ids = self.process_output(outputs)
- return self.boxes, self.scores, self.class_ids
- def prepare_input(self, image):
- self.img_height, self.img_width = image.shape[:2]
- input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
- # Resize input image
- input_img = cv2.resize(input_img, (800, 800))
- # Scale input pixel values to 0 to 1
- input_img = input_img / 255.0
- input_img = input_img.transpose(2, 0, 1)
- input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)
- return input_tensor
- def inference(self, input_tensor):
- start = time.perf_counter()
- outputs = numpy.ascontiguousarray(input_tensor)
- outputs = self.session([outputs])
- return outputs
- def process_output(self, output):
- predictions = np.squeeze(output[0]).T
- # Filter out object confidence scores below threshold
- scores = np.max(predictions[:, 4:], axis=1)
- predictions = predictions[scores > self.conf_threshold, :]
- scores = scores[scores > self.conf_threshold]
- if len(scores) == 0:
- return [], [], []
- # Get the class with the highest confidence
- class_ids = np.argmax(predictions[:, 4:], axis=1)
- # Get bounding boxes for each object
- boxes = self.extract_boxes(predictions)
- # Apply non-maxima suppression to suppress weak, overlapping bounding boxes
- indices = nms(boxes, scores, self.iou_threshold)
- return boxes[indices], scores[indices], class_ids[indices]
- def extract_boxes(self, predictions):
- # Extract boxes from predictions
- boxes = predictions[:, :4]
- # Scale boxes to original image dimensions
- boxes = self.rescale_boxes(boxes)
- # Convert boxes to xyxy format
- boxes = xywh2xyxy(boxes)
- return boxes
- def rescale_boxes(self, boxes):
- # Rescale boxes to original image dimensions
- input_shape = np.array([800, 800, 800, 800])
- boxes = np.divide(boxes, input_shape, dtype=np.float32)
- boxes *= np.array([self.img_width, self.img_height, self.img_width, self.img_height])
- return boxes
- def draw_detections(self, image, draw_scores=True, mask_alpha=0.4):
- return draw_detections(image, self.boxes, self.scores,
- self.class_ids, mask_alpha)
- def get_input_details(self):
- model_inputs = self.session.get_inputs()
- self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]
- self.input_shape = model_inputs[0].shape
- self.input_height = self.input_shape[2]
- self.input_width = self.input_shape[3]
- def get_output_details(self):
- model_outputs = self.session.get_outputs()
- self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]
- if __name__ == '__main__':
- from imread_from_url import imread_from_url
- model_path = "../models/yolov8m.onnx"
- # Initialize YOLOv7 object detector
- yolov7_detector = YOLOv8(model_path, conf_thres=0.3, iou_thres=0.5)
- img_url = "https://live.staticflickr.com/13/19041780_d6fd803de0_3k.jpg"
- img = imread_from_url(img_url)
- # Detect Objects
- yolov7_detector(img)
- # Draw detections
- combined_img = yolov7_detector.draw_detections(img)
- cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
- cv2.imshow("Output", combined_img)
- cv2.waitKey(0)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement