Advertisement
mayankjoin3

chatgpt Wilcoxon signed-rank test

Apr 5th, 2025
297
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 12.32 KB | None | 0 0
  1. from collections import Counter
  2. from datetime import datetime
  3. import numpy as np
  4. import pandas as pd
  5. import matplotlib.pyplot as plt
  6. import seaborn as sns
  7. from sklearn.calibration import CalibratedClassifierCV, LabelEncoder, label_binarize
  8. from sklearn.cluster import KMeans
  9. from sklearn.gaussian_process import GaussianProcessClassifier
  10. from sklearn.kernel_approximation import RBFSampler
  11. import torch
  12. import torch.nn as nn
  13. from sklearn.model_selection import train_test_split, KFold
  14. from sklearn.ensemble import IsolationForest, RandomForestClassifier, ExtraTreesClassifier, GradientBoostingClassifier, AdaBoostClassifier, BaggingClassifier, StackingClassifier, VotingClassifier
  15. from sklearn.tree import DecisionTreeClassifier
  16. from sklearn.neighbors import KNeighborsClassifier
  17. from sklearn.linear_model import LogisticRegression, Perceptron, RidgeClassifier, PassiveAggressiveClassifier, SGDClassifier
  18. from sklearn.naive_bayes import GaussianNB, MultinomialNB, BernoulliNB
  19. from sklearn.svm import SVC, OneClassSVM
  20. from sklearn.ensemble import AdaBoostClassifier, VotingClassifier
  21. from sklearn.tree import DecisionTreeClassifier
  22. from sklearn.base import BaseEstimator, ClassifierMixin
  23. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
  24. from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
  25. from sklearn.base import BaseEstimator, ClassifierMixin, clone
  26. from imblearn.over_sampling import SMOTE
  27. from imblearn.under_sampling import RandomUnderSampler
  28. from scipy.special import softmax
  29. from sklearn.decomposition import PCA
  30. from sklearn.preprocessing import LabelBinarizer
  31. from xgboost import XGBClassifier
  32. from lightgbm import LGBMClassifier
  33. from hmmlearn.hmm import GaussianHMM
  34. from sklearn.neural_network import MLPClassifier
  35. from catboost import CatBoostClassifier
  36. from imblearn.ensemble import BalancedRandomForestClassifier
  37. from sklearn.metrics import (accuracy_score, precision_score, recall_score, f1_score,
  38.                              balanced_accuracy_score, confusion_matrix,
  39.                              matthews_corrcoef, cohen_kappa_score, log_loss,
  40.                              mean_squared_error, mean_absolute_error, r2_score)
  41. from sklearn.metrics import roc_curve, auc, precision_recall_curve
  42. from hmmlearn import hmm
  43. import time
  44. import os
  45.  
  46. # Set the number of K folds as a global variable
  47. K_FOLDS = 2
  48. INPUT_FILE = 'NF-BoT-IoT_preprocessed_dataset_BOA.csv'
  49. DATASET_PERCENTAGE = 1
  50. FEATURES =  [
  51.     "L4_DST_PORT",
  52.     "PROTOCOL",
  53.     "L7_PROTO",
  54.     "OUT_BYTES",
  55.     "IN_PKTS",
  56.     "OUT_PKTS",
  57.     "TCP_FLAGS",
  58.     "FLOW_DURATION_MILLISECONDS",
  59.     "label"
  60. ]
  61.  
  62.  
  63. df = pd.read_csv(INPUT_FILE)
  64. df = df.sample(frac=DATASET_PERCENTAGE, random_state=42).reset_index(drop=True)
  65. X = df.drop(columns=['label']).values
  66. if len(FEATURES) > 0:
  67.     X = df[FEATURES].values
  68. y = df['label'].values
  69. timing_results = []
  70.  
  71. # Get the current date and time
  72. current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
  73.  
  74. # Define classifiers and metrics
  75. classifiers = {
  76. 'Naive Bayes (Multinomial)': MultinomialNB(),
  77. 'Artificial Neural Networks (ANN)': MLPClassifier(
  78.     hidden_layer_sizes=(100, 50),  # Two hidden layers
  79.     activation='relu',
  80.     solver='adam',
  81.     max_iter=300,
  82.     early_stopping=True,
  83.     random_state=42
  84. )
  85. 'Multi-Layer Perceptron (MLP)': MLPClassifier(max_iter=200),
  86. 'Deep Neural Networks (DNN)': MLPClassifier(hidden_layer_sizes=(50, 50), max_iter=200),
  87. 'LSTM Classifier': LSTMClassifier(input_size=X.shape[1], hidden_size=64, num_layers=2, dropout=0.2)
  88.    
  89. }
  90. # Store results
  91. results = []
  92.  
  93. kf = KFold(n_splits=K_FOLDS, shuffle=True, random_state=42)
  94.  
  95. # Create a directory to save confusion matrices
  96.  
  97. base_output_folder = os.path.dirname(os.path.dirname(INPUT_FILE))  # One level back from input
  98. confusion_matrices_folder = os.path.join(base_output_folder, "confusion_matrices")
  99. auc_curves_folder = os.path.join(base_output_folder, "auc_curves")
  100. precision_recall_curves_folder = os.path.join(base_output_folder, "precision_recall_curves")
  101. metrics_folder = os.path.join(base_output_folder, "metrics") # For storing metrics
  102.  
  103. os.makedirs(confusion_matrices_folder, exist_ok=True)
  104. os.makedirs(auc_curves_folder, exist_ok=True)
  105. os.makedirs(precision_recall_curves_folder, exist_ok=True)
  106. os.makedirs(metrics_folder, exist_ok=True)
  107.  
  108. from sklearn.preprocessing import LabelBinarizer
  109. from sklearn.calibration import CalibratedClassifierCV
  110.  
  111. def get_probabilities(clf, X_test):
  112.     if hasattr(clf, "predict_proba"):
  113.         return clf.predict_proba(X_test)
  114.     elif hasattr(clf, "decision_function"):
  115.         scores = clf.decision_function(X_test)
  116.         if scores.ndim == 1:
  117.             return np.vstack([1 - scores, scores]).T  # Convert to probability-like format
  118.         return scores
  119.     elif hasattr(clf, "fit"):  # If it's a classifier but lacks predict_proba
  120.         try:
  121.             calibrated_clf = CalibratedClassifierCV(clf, cv="prefit")
  122.             calibrated_clf.fit(X_test, clf.predict(X_test))
  123.             return calibrated_clf.predict_proba(X_test)
  124.         except Exception:
  125.             pass  # Fall back to one-hot encoding
  126.    
  127.     # Fallback: One-hot encode predictions
  128.     preds = clf.predict(X_test)
  129.     lb = LabelBinarizer()
  130.     preds_bin = lb.fit_transform(preds)
  131.     if preds_bin.shape[1] == 1:  # Binary classification case
  132.         preds_bin = np.hstack([1 - preds_bin, preds_bin])
  133.     return preds_bin
  134.  
  135.  
  136. # Helper function for confusion matrix metrics
  137. def confusion_matrix_metrics(cm, classes):
  138.     metrics = {}
  139.     for idx, class_label in enumerate(classes):
  140.         TP = cm[idx, idx]  # True Positives for this class
  141.         FP = cm[:, idx].sum() - TP  # False Positives for this class
  142.         FN = cm[idx, :].sum() - TP  # False Negatives for this class
  143.         TN = cm.sum() - (TP + FP + FN)  # True Negatives for this class
  144.  
  145.         metrics[class_label] = {
  146.             'TPR': TP / (TP + FN + 1e-10) if (TP + FN) > 0 else 0,
  147.             'TNR': TN / (TN + FP + 1e-10) if (TN + FP) > 0 else 0,
  148.             'FPR': FP / (FP + TN + 1e-10) if (FP + TN) > 0 else 0,
  149.             'FNR': FN / (FN + TP + 1e-10) if (FN + TP) > 0 else 0
  150.         }
  151.     return metrics
  152.  
  153. # Iterate over classifiers
  154. for clf_name, clf in classifiers.items():
  155.     print(f"Running {clf_name}...")
  156.     fold_idx = 1
  157.     for train_index, test_index in kf.split(X):
  158.         # Split the data
  159.         X_train, X_test = X[train_index], X[test_index]
  160.         y_train, y_test = y[train_index], y[test_index]
  161.  
  162.         # Record start time
  163.         start_train_time = time.time()
  164.         clf.fit(X_train, y_train)
  165.         train_time = time.time() - start_train_time
  166.  
  167.         start_test_time = time.time()
  168.         y_pred = clf.predict(X_test)
  169.         test_time = time.time() - start_test_time
  170.  
  171.         timing_results.append({
  172.             'Classifier': clf_name,
  173.             'Fold': fold_idx,
  174.             'Training Time (s)': train_time,
  175.             'Testing Time (s)': test_time,
  176.             'Total Time (s)': train_time + test_time
  177.         })
  178.  
  179.         # Compute metrics
  180.         unique_classes = np.unique(y)
  181.         cm = confusion_matrix(y_test, y_pred, labels=unique_classes)
  182.         cm_metrics = confusion_matrix_metrics(cm, unique_classes)
  183.  
  184.         class_metrics_list = []
  185.  
  186.         for class_label in unique_classes:
  187.             class_mask = (y_test == class_label)
  188.             if class_mask.sum() == 0:
  189.                 # Skip classes with no instances in the test set for this fold
  190.                 class_specific_metrics = {
  191.                     'Classifier': clf_name,
  192.                     'Fold': fold_idx,
  193.                     'Class': class_label,
  194.                     'Accuracy': np.nan,
  195.                     'Precision': np.nan,
  196.                     'Recall': np.nan,
  197.                     'F1 Score': np.nan,
  198.                     'Balanced Accuracy': np.nan,
  199.                     'True Positive Rate (TPR)': np.nan,
  200.                     'True Negative Rate (TNR)': np.nan,
  201.                     'False Positive Rate (FPR)': np.nan,
  202.                     'False Negative Rate (FNR)': np.nan,
  203.                     'Training Time (s)': train_time,
  204.                     'Testing Time (s)': test_time
  205.                 }
  206.             else:
  207.                 class_specific_metrics = {
  208.                     'Classifier': clf_name,
  209.                     'Fold': fold_idx,
  210.                     'Class': class_label,
  211.                     'Accuracy': accuracy_score(y_test[class_mask], y_pred[class_mask]) if np.any(class_mask) else np.nan,
  212.                     'Precision': precision_score(y_test[class_mask], y_pred[class_mask], average='weighted', zero_division=0) if np.any(class_mask) else np.nan,
  213.                     'Recall': recall_score(y_test[class_mask], y_pred[class_mask], average='weighted') if np.any(class_mask) else np.nan,
  214.                     'F1 Score': f1_score(y_test[class_mask], y_pred[class_mask], average='weighted') if np.any(class_mask) else np.nan,
  215.                     'Balanced Accuracy': balanced_accuracy_score(y_test[class_mask], y_pred[class_mask]) if np.any(class_mask) else np.nan,
  216.                     'True Positive Rate (TPR)': cm_metrics[class_label]['TPR'],
  217.                     'True Negative Rate (TNR)': cm_metrics[class_label]['TNR'],
  218.                     'False Positive Rate (FPR)': cm_metrics[class_label]['FPR'],
  219.                     'False Negative Rate (FNR)': cm_metrics[class_label]['FNR'],
  220.                     'Training Time (s)': train_time,
  221.                     'Testing Time (s)': test_time
  222.                 }
  223.  
  224.             class_metrics_list.append(class_specific_metrics)
  225.  
  226.         # Plot and save confusion matrix
  227.         plt.figure(figsize=(8, 6))
  228.         sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=unique_classes, yticklabels=unique_classes)
  229.         plt.title(f"{clf_name} - Fold {fold_idx} Confusion Matrix")
  230.         plt.xlabel("Predicted")
  231.         plt.ylabel("True")
  232.         plt.savefig(os.path.join(base_output_folder, f"confusion_matrices/{clf_name}_fold_{fold_idx}.png"))
  233.         plt.close()
  234.  
  235.         # Compute ROC Curve
  236.         y_proba = get_probabilities(clf,X_test)
  237.         y_test_bin = label_binarize(y_test, classes=np.unique(y_test))
  238.         n_classes = min(y_test_bin.shape[1], y_proba.shape[1])
  239.         for i in range(n_classes):
  240.             fpr, tpr, _ = roc_curve(y_test_bin[:, i], y_proba[:, i])
  241.             roc_auc = auc(fpr, tpr)
  242.            
  243.             plt.figure()
  244.             plt.plot(fpr, tpr, label=f'Class {i} AUC = {roc_auc:.2f}')
  245.             plt.plot([0, 1], [0, 1], linestyle='--', color='gray')
  246.             plt.xlabel('False Positive Rate')
  247.             plt.ylabel('True Positive Rate')
  248.             plt.title(f"{clf_name} - Fold {fold_idx} ROC Curve (Class {i})")
  249.             plt.legend(loc="lower right")
  250.             plt.savefig(os.path.join(base_output_folder,f"auc_curves/{clf_name}_fold_{fold_idx}_class_{i}.png"))
  251.             plt.close()
  252.            
  253.             precision, recall, _ = precision_recall_curve(y_test_bin[:, i], y_proba[:, i])
  254.             plt.figure()
  255.             plt.plot(recall, precision, label=f'Class {i}')
  256.             plt.xlabel('Recall')
  257.             plt.ylabel('Precision')
  258.             plt.title(f"{clf_name} - Fold {fold_idx} Precision-Recall Curve (Class {i})")
  259.             plt.legend()
  260.             plt.savefig(os.path.join(base_output_folder, f"precision_recall_curves/{clf_name}_fold_{fold_idx}_class_{i}.png"))
  261.             plt.close()
  262.  
  263.         # Append results for this fold
  264.         results.extend(class_metrics_list)
  265.         # Save results to CSV after each fold
  266.         results_df = pd.DataFrame(results)
  267.         results_df.to_csv(os.path.join(metrics_folder, f"metrics_{current_time}.csv"), index=False)
  268.  
  269.         # Save timing results after each fold
  270.         timing_df = pd.DataFrame(timing_results)
  271.         timing_df.to_csv(os.path.join(metrics_folder, f"time_{current_time}.csv"), index=False)
  272.  
  273.         fold_idx += 1
  274.  
  275.  
  276. print("Finished!")
  277.  
  278.  
  279. ============================================================================================================
  280. Reviewer asked these questions
  281.  
  282. Metrics like latency, model size, and computational cost in terms of memory and processing power are critical in IDS contexts
  283. Perform statistical tests (e.g., Wilcoxon signed-rank test , t-test, ANOVA) to confirm that the reported performance improvements are statistically significant.
  284.  
  285. Please add and produce full code
  286.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement