Advertisement
SpaceRiver

Untitled

Feb 22nd, 2023
628
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 1.96 KB | None | 0 0
  1. from kaggle_secrets import UserSecretsClient
  2. user_secrets = UserSecretsClient()
  3. user_credential = user_secrets.get_gcloud_credential()
  4. user_secrets.set_tensorflow_credential(user_credential)
  5.  
  6.  
  7.  
  8. from kaggle_datasets import KaggleDatasets
  9.  
  10. GCS_PATH = KaggleDatasets().get_gcs_path('gan-getting-started')
  11.  
  12. MONET_FILENAMES = tf.io.gfile.glob(str(GCS_PATH + '/monet_jpg/*.jpg'))
  13. # Selecting first 30
  14. MONET_FILENAMES = MONET_FILENAMES[0:30]
  15. PHOTO_FILENAMES = tf.io.gfile.glob(str(GCS_PATH + '/photo_jpg/*.jpg'))
  16.  
  17.  
  18.  
  19. import io
  20. def decode_image(image_path):
  21.     image_bytes = tf.io.read_file(image_path)
  22.     image = Image.open(io.BytesIO(image_bytes.numpy()))
  23.     image_array = np.array(image)
  24.     return image_array
  25.  
  26. if len(tf.config.experimental.list_physical_devices('GPU')) > 0:
  27.     config=tf.compat.v1.ConfigProto(log_device_placement=True, device_count={'GPU': 1})
  28.     tf.compat.v1.Session()
  29.     print("Using GPU for TensorFlow")
  30.     config.gpu_options.allow_growth = True
  31.     session = tf.compat.v1.Session(config=config)
  32.     K.set_session(session)
  33. else:
  34.     print("Using CPU for TensorFlow")
  35.  
  36. print("Using tf ", tf.__version__)
  37. print("Executing eagerly: ",tf.executing_eagerly())
  38.  
  39. gc.enable()
  40.  
  41.  
  42.  
  43.  
  44. def image_loader(file_paths):
  45.     random.shuffle(file_paths)
  46.     while True:
  47.         for file in file_paths:
  48.             yield decode_image(file)
  49.  
  50.  
  51. def augmented_image_loader(file_paths):
  52.     while True:
  53.         random_image = random.choice(file_paths)
  54.         random_image = decode_image(random_image)
  55.         yield augment_element(random_image)
  56.  
  57.  
  58.  
  59.  
  60. monet_dataset = tf.data.Dataset.from_generator(
  61.         lambda: augmented_image_loader(MONET_FILENAMES),
  62.         output_types=tf.float32,
  63.         output_shapes=(tf.TensorShape([None, None, 3])),
  64.     )
  65. photos_dataset = tf.data.Dataset.from_generator(
  66.         lambda: image_loader(PHOTO_FILENAMES),
  67.         output_types=tf.float32,
  68.         output_shapes=(tf.TensorShape([None, None, 3])),
  69.     )
  70.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement