Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- >> %Az alap egyenletek
- >> eq1 = u2 == n*u1;
- >> eq2 = i1 == -n*i2;
- >> eq3 = i2 == (u-u2)/R;
- >> eq4 = is - u1/(2*R) - i1 - f1/R == 0;
- >> eq5 = f1/R - i2 - u/(2*R) + (f1-f2)/(J*L) == 0;
- >> eq6 = (f2-(f1+u))/R + (f2-f1)/(J*L) == 0;
- >> eq7 = -is + u1/(2*R) + i1 + (u1-(f1+u))/R + (u1-(f1+u))/R + (u1-(f1+u))/(1/(J*C)) == 0;
- >> %A megoldás menete az első feladathoz hasonló
- >> [A,B] = equationsToMatrix([eq1, eq2, eq3, eq4, eq5, eq6, eq7], [u f1 f2 u1 u2 i1 i2])
- A =
- [ 0, 0, 0, -8, 1, 0, 0]
- [ 0, 0, 0, 0, 0, 1, 8]
- [ -1/5, 0, 0, 0, 1/5, 0, 1]
- [ 0, -1/5, 0, -1/10, 0, -1, 0]
- [ -1/10, 1/J + 1/5, -1/J, 0, 0, 0, -1]
- [ -1/5, - 1/J - 1/5, 1/J + 1/5, 0, 0, 0, 0]
- [ - 8*J - 2/5, - 8*J - 2/5, 0, 8*J + 1/2, 0, 1, 0]
- B =
- 0
- 0
- 0
- -is
- 0
- 0
- is
- >> X = linsolve(A,B)
- X =
- (40*(180*is*J^2 + 913*is*J + 65*is))/(13240*J^2 + 119393*J + 7875)
- -(20*(260*is*J^2 + 1113*is*J + 55*is))/(13240*J^2 + 119393*J + 7875)
- -(20*(- 100*is*J^2 + 1087*is*J + 55*is))/(13240*J^2 + 119393*J + 7875)
- (10*(200*is*J^2 + 1413*is*J + 95*is))/(13240*J^2 + 119393*J + 7875)
- (80*(200*is*J^2 + 1413*is*J + 95*is))/(13240*J^2 + 119393*J + 7875)
- (64*(220*is*J^2 + 1913*is*J + 125*is))/(13240*J^2 + 119393*J + 7875)
- -(8*(220*is*J^2 + 1913*is*J + 125*is))/(13240*J^2 + 119393*J + 7875)
- >> %Ebből leolvasható az átviteli karakterisztika
- >> SZ = [7200 36520 2600]
- SZ =
- 7200 36520 2600
- >> N = [13240 119393 7875]
- N =
- 13240 119393 7875
- >> %Így a diagramok
- >> bode(SZ,N);
- >> nyquist(SZ,N);
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement