Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- ## Summarizes data.
- ## Gives count, mean, standard deviation, standard error of the mean, and confidence interval (default 95%).
- ## data: a data frame.
- ## measurevar: the name of a column that contains the variable to be summariezed
- ## groupvars: a vector containing names of columns that contain grouping variables
- ## na.rm: a boolean that indicates whether to ignore NA's
- ## conf.interval: the percent range of the confidence interval (default is 95%)
- summarySE <- function(data=NULL, measurevar, groupvars=NULL, na.rm=FALSE,
- conf.interval=.95, .drop=TRUE) {
- require(plyr)
- # New version of length which can handle NA's: if na.rm==T, don't count them
- length2 <- function (x, na.rm=FALSE) {
- if (na.rm) sum(!is.na(x))
- else length(x)
- }
- # This does the summary. For each group's data frame, return a vector with
- # N, mean, and sd
- datac <- ddply(data, groupvars, .drop=.drop,
- .fun = function(xx, col) {
- c(N = length2(xx[[col]], na.rm=na.rm),
- mean = mean (xx[[col]], na.rm=na.rm),
- sd = sd (xx[[col]], na.rm=na.rm)
- )
- },
- measurevar
- )
- # Rename the "mean" column
- datac <- rename(datac, c("mean" = measurevar))
- datac$se <- datac$sd / sqrt(datac$N) # Calculate standard error of the mean
- # Confidence interval multiplier for standard error
- # Calculate t-statistic for confidence interval:
- # e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1
- ciMult <- qt(conf.interval/2 + .5, datac$N-1)
- datac$ci <- datac$se * ciMult
- return(datac)
- }
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement