Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import numpy as np
- cimport numpy as np
- cimport cython
- # DTYPE = np.float64
- # ctypedef np.float64_t DTYPE_t
- ctypedef fused DTYPE_t:
- np.float32_t
- np.float64_t
- def im2col_cython(np.ndarray[DTYPE_t, ndim=4] x, int field_height,
- int field_width, int padding, int stride):
- cdef int N = x.shape[0]
- cdef int C = x.shape[1]
- cdef int H = x.shape[2]
- cdef int W = x.shape[3]
- cdef int HH = (H + 2 * padding - field_height) / int(stride) + 1
- cdef int WW = (W + 2 * padding - field_width) / int(stride) + 1
- cdef int p = padding
- cdef np.ndarray[DTYPE_t, ndim=4] x_padded = np.pad(x,
- ((0, 0), (0, 0), (p, p), (p, p)), mode='constant')
- cdef np.ndarray[DTYPE_t, ndim=2] cols = np.zeros(
- (C * field_height * field_width, N * HH * WW),
- dtype=x.dtype)
- # Moving the inner loop to a C function with no bounds checking works, but does
- # not seem to help performance in any measurable way.
- im2col_cython_inner(cols, x_padded, N, C, H, W, HH, WW,
- field_height, field_width, padding, stride)
- return cols
- @cython.boundscheck(False)
- cdef int im2col_cython_inner(np.ndarray[DTYPE_t, ndim=2] cols,
- np.ndarray[DTYPE_t, ndim=4] x_padded,
- int N, int C, int H, int W, int HH, int WW,
- int field_height, int field_width, int padding, int stride) except? -1:
- cdef int c, ii, jj, row, yy, xx, i, col
- for c in range(C):
- for yy in range(HH):
- for xx in range(WW):
- for ii in range(field_height):
- for jj in range(field_width):
- row = c * field_width * field_height + ii * field_height + jj
- for i in range(N):
- col = yy * WW * N + xx * N + i
- cols[row, col] = x_padded[i, c, stride * yy + ii, stride * xx + jj]
- def col2im_cython(np.ndarray[DTYPE_t, ndim=2] cols, int N, int C, int H, int W,
- int field_height, int field_width, int padding, int stride):
- cdef np.ndarray x = np.empty((N, C, H, W), dtype=cols.dtype)
- cdef int HH = (H + 2 * padding - field_height) / int(stride) + 1
- cdef int WW = (W + 2 * padding - field_width) / int(stride) + 1
- cdef np.ndarray[DTYPE_t, ndim=4] x_padded = np.zeros((N, C, H + 2 * padding, W + 2 * padding),
- dtype=cols.dtype)
- # Moving the inner loop to a C-function with no bounds checking improves
- # performance quite a bit for col2im.
- col2im_cython_inner(cols, x_padded, N, C, H, W, HH, WW,
- field_height, field_width, padding, stride)
- if padding > 0:
- return x_padded[:, :, padding:-padding, padding:-padding]
- return x_padded
- @cython.boundscheck(False)
- cdef int col2im_cython_inner(np.ndarray[DTYPE_t, ndim=2] cols,
- np.ndarray[DTYPE_t, ndim=4] x_padded,
- int N, int C, int H, int W, int HH, int WW,
- int field_height, int field_width, int padding, int stride) except? -1:
- cdef int c, ii, jj, row, yy, xx, i, col
- for c in range(C):
- for ii in range(field_height):
- for jj in range(field_width):
- row = c * field_width * field_height + ii * field_height + jj
- for yy in range(HH):
- for xx in range(WW):
- for i in range(N):
- col = yy * WW * N + xx * N + i
- x_padded[i, c, stride * yy + ii, stride * xx + jj] += cols[row, col]
- @cython.boundscheck(False)
- @cython.wraparound(False)
- cdef col2im_6d_cython_inner(np.ndarray[DTYPE_t, ndim=6] cols,
- np.ndarray[DTYPE_t, ndim=4] x_padded,
- int N, int C, int H, int W, int HH, int WW,
- int out_h, int out_w, int pad, int stride):
- cdef int c, hh, ww, n, h, w
- for n in range(N):
- for c in range(C):
- for hh in range(HH):
- for ww in range(WW):
- for h in range(out_h):
- for w in range(out_w):
- x_padded[n, c, stride * h + hh, stride * w + ww] += cols[c, hh, ww, n, h, w]
- def col2im_6d_cython(np.ndarray[DTYPE_t, ndim=6] cols, int N, int C, int H, int W,
- int HH, int WW, int pad, int stride):
- cdef np.ndarray x = np.empty((N, C, H, W), dtype=cols.dtype)
- cdef int out_h = (H + 2 * pad - HH) / int(stride) + 1
- cdef int out_w = (W + 2 * pad - WW) / int(stride) + 1
- cdef np.ndarray[DTYPE_t, ndim=4] x_padded = np.zeros((N, C, H + 2 * pad, W + 2 * pad),
- dtype=cols.dtype)
- col2im_6d_cython_inner(cols, x_padded, N, C, H, W, HH, WW, out_h, out_w, pad, stride)
- if pad > 0:
- return x_padded[:, :, pad:-pad, pad:-pad]
- return x_padded
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement