Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- from cv2_41 import cv2
- import numpy as np
- # rotate_bound: helper function that rotates the image adds some padding to avoid cutting off parts of it
- # reference: https://www.pyimagesearch.com/2017/01/02/rotate-images-correctly-with-opencv-and-python/
- def rotate_bound(image, angle):
- # grab the dimensions of the image and then determine the center
- (h, w) = image.shape[:2]
- (cX, cY) = (w // 2, h // 2)
- # grab the rotation matrix (applying the negative of the angle to rotate clockwise), then grab the sine and cosine
- # (i.e., the rotation components of the matrix)
- M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
- cos = np.abs(M[0, 0])
- sin = np.abs(M[0, 1])
- # compute the new bounding dimensions of the image
- nW = int(np.multiply(h, sin) + np.multiply(w, cos))
- nH = int(np.multiply(h, cos) + np.multiply(w, sin))
- # adjust the rotation matrix to take into account translation
- M[0, 2] += (nW / 2) - cX
- M[1, 2] += (nH / 2) - cY
- # perform rotation and return the image (white background) along with the Rotation Matrix
- return cv2.warpAffine(image, M, (nW, nH), borderValue=(255,255,255)), M
- # Step 1 - Load images
- input_img = cv2.imread("target.png", cv2.IMREAD_GRAYSCALE)
- template_img = cv2.imread("template.png", cv2.IMREAD_GRAYSCALE)
- matches_dbg_img = cv2.cvtColor(input_img, cv2.COLOR_GRAY2BGR) # for debugging purposes
- # Step 2 - Generate some ROIs
- # each ROI contains the x,y,w,h and angle (degree) to rotate the box and make its M appear horizontal
- roi_w = 26
- roi_h = 26
- roi_list = []
- roi_list.append((112, 7, roi_w, roi_h, 0))
- roi_list.append((192, 36, roi_w, roi_h, -45))
- roi_list.append((227, 104, roi_w, roi_h, -90))
- roi_list.append((195, 183, roi_w, roi_h, -135))
- roi_list.append((118, 216, roi_w, roi_h, -180))
- roi_list.append((49, 196, roi_w, roi_h, -225))
- roi_list.append((10, 114, roi_w, roi_h, -270))
- roi_list.append((36, 41, roi_w, roi_h, -315))
- # debug: draw green ROIs
- rois_dbg_img = cv2.cvtColor(input_img, cv2.COLOR_GRAY2BGR)
- for roi in roi_list:
- x, y, w, h, angle = roi
- x2 = x + w
- y2 = y + h
- cv2.rectangle(rois_dbg_img, (x, y), (x2, y2), (0,255,0), 2)
- cv2.imwrite('target_rois.png', rois_dbg_img)
- cv2.imshow('ROIs', rois_dbg_img)
- cv2.waitKey(0)
- cv2.destroyWindow('ROIs')
- # Step 3 - Select a ROI, crop and rotate it, then perform Template Matching
- for i, roi in enumerate(roi_list):
- x, y, w, h, angle = roi
- roi_cropped = input_img[y:y+h, x:x+w]
- roi_rotated, M = rotate_bound(roi_cropped, angle)
- # debug: display each rotated ROI
- #cv2.imshow('ROIs-cropped-rotated', roi_rotated)
- #cv2.waitKey(0)
- # debug: dump roi to the disk (before/after rotation)
- filename = 'target_roi' + str(i)
- cv2.imwrite(filename + '.png', roi_cropped)
- cv2.imwrite(filename + '_rotated.png', roi_rotated)
- # perform template matching
- res = cv2.matchTemplate(roi_rotated, template_img, cv2.TM_CCOEFF_NORMED)
- (_, score, _, (pos_x, pos_y)) = cv2.minMaxLoc(res)
- print('TM score=', score)
- # Step 4 - When a TM is found, revert the rotation of matched point so that it represents a location in the original image
- # Note: pos_x and pos_y define the location of the matched template in a rotated ROI
- threshold = 0.75
- if (score >= threshold):
- # debug in cropped image
- print('find_k_symbol: FOUND pos_x=', pos_x, 'pos_y=', pos_y, 'w=', template_img.shape[1], 'h=', template_img.shape[0])
- rot_output_roi = cv2.cvtColor(roi_rotated, cv2.COLOR_GRAY2BGR)
- cv2.rectangle(rot_output_roi, (pos_x, pos_y), (pos_x + template_img.shape[1], pos_y + template_img.shape[0]), (0, 165, 255), 2) # orange
- cv2.imshow('rot-matched-template', rot_output_roi)
- cv2.waitKey(0)
- cv2.destroyWindow('rot-matched-template')
- ###
- # How to convert the location of the matched template (pos_x, pos_y) to points in roi_cropped?
- # (which is the ROI before rotation)
- ###
- # extract variables from the rotation matrix
- M_x = M[0][2]
- M_y = M[1][2]
- #print('M_x=', M_x, '\tM_y=', M_y)
- M_cosx = M[0][0]
- M_msinx = M[0][1]
- #print('M_cosx=', M_cosx, '\tM_msinx=', M_msinx)
- M_siny = M[1][0]
- M_cosy = M[1][1]
- #print('M_siny=', M_siny, '\tM_cosy=', M_cosy)
- # undo translation:
- dst1_x = pos_x - M_x
- dst1_y = pos_y - M_y
- # undo rotation:
- # after this operation, (new_pos_x, new_pos_y) should already be a valid point in the original ROI
- new_pos_x = M_cosx * dst1_x - M_msinx * dst1_y
- new_pos_y = -M_siny * dst1_x + M_cosy * dst1_y
- # debug: create the bounding rect of the detected symbol in the original input image
- detected_x = x + int(new_pos_x)
- detected_y = y + int(new_pos_y)
- detected_w = template_img.shape[1]
- detected_h = template_img.shape[0]
- detected_rect = (detected_x, detected_y, detected_w, detected_h)
- print('find_k_symbol: detected_x=', detected_x, 'detected_y=', detected_y, 'detected_w=', detected_w, 'detected_h=', detected_h)
- print()
- bb_points = np.array([
- (detected_x, detected_y)
- , (detected_x + detected_w, detected_y)
- , (detected_x + detected_w, detected_y + detected_h)
- , (detected_x, detected_y + detected_h)
- ])
- Mrot = cv2.getRotationMatrix2D((detected_x, detected_y), angle, 1.0)
- rot_points = np.array([np.dot(Mrot, np.array([p[0], p[1], 1]).T) for p in bb_points], np.int32)
- cv2.polylines(matches_dbg_img, [rot_points], True, (0, 165, 255), 2)
- #cv2.rectangle(matches_dbg_img, (detected_x, detected_y), (detected_x + detected_w, detected_y + detected_h), (0, 165, 255), 2) # orange
- cv2.imwrite('target_matches.png', matches_dbg_img)
- cv2.imshow('matches', matches_dbg_img)
- cv2.waitKey(0)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement