Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- Identify ml classfication algos from this list:
- (ACO)
- (CNN-LSTM)
- (DIC) algorithm
- 1-D CNN
- 1D Convolutional Neural Network (1dCNN)
- 1D-CNN
- 2D-CNN
- A Lite BERT (ALBERT)
- AB
- ABC
- AC
- Ada Boosting
- ADABoost
- AdaBoost classifier
- AdaBoost-A
- Adam optimizer
- Adaptive Alarming Module (AAM)
- Adaptive Thresholding with Early Stopping (ATES)
- Adaptive Variational Autoencoder
- Adaptively federated multi-task learning
- ADH
- Advanced Encryption Standard AES
- Adversarial Training (AT)
- AE
- Algorithmic-based detection systems.
- ALWM-ResNet
- AutoEncoder
- dynamic
- k-means clustering
- Poisson regression
- Random Forest (RF)
- Sustainable Ensemble Learning method
- SVM
- ANN
- ANN-MLP
- Anomaly-based Detection
- Ant colony optimization
- Ant Lion Optimization (ALO)
- AODV (Ad-Hoc on Dem
- Vector)
- ARM
- Artificial bee colony
- Artificial Neural Networks
- Artificial Neural Networks (ANN)
- Artificial neural networks (ANNs)
- Artificial Neural Networks.
- Artificial Optimization (AO)
- ASC.
- Asynchronous FL-CNN-GRULSTM
- AttackNet
- Attention
- Attention-
- Attention Mechanism
- Attention-based LSTM
- AUC
- Augmentation
- Auto Encoder (AE)
- AutoEncoder
- Auto-Encoder
- Autoencoder-based IDS
- Autoencoders
- AutoGluon
- AutoML
- Bagging
- bagging ensemble
- Bagging: Random Forest
- Basic Autoencoder (AE)
- Batch reinforcement learning
- Bayes Classifiers
- Bayesian Autoencoder (BAE)
- Bayesian Logic Regression (BLR)
- Bayesian Network Models
- Bayesian Neural Networks (BNN)
- Bayes-Net
- BayesNet Algorithm
- BBO algorithm
- Benign
- Bidirectional Encoder Representations from Transformers (BERT)
- Bidirectional Long Short-Term Memory (BiLSTM)
- Big-Bang Big-Crunch (BBBC) optimization
- BiGRU
- BiLSTM
- Bi-LSTM
- Bi-LSTM
- Bi-GRU
- Blockchain
- BN
- BN firefly
- BoAu
- BODL-ADC
- Boltzmann Machine (BM)
- Boosting
- Boosting (XG-Boost)
- Boosting: ADABoost
- BoSC-10
- BoSC-3
- BoSC-4
- Bot
- botnet
- BPEO algorithm
- Broker Algorithm
- C&W technique
- C5
- CA
- CAFECNN
- CANET
- Carlini & Wagner (C&W)
- CART
- CART (Classification
- Regression Trees)
- CART Decision Tree (DT)
- Cascade Forward Back Propagation Neural Network (CFBPNN)
- CBRNN
- CE
- Centralized Blending
- Chebyshev Distance
- Chi-square
- Classification
- cloud–fog
- Clustering
- CNN
- CNN + LSTM
- CNN neural network
- CNN-based IDS
- CNN-BiLSTM
- CNN-CapSA
- CNN-DSFO
- CNN-GRU
- CNN-LSTM
- CNN-MLP
- CNNs
- CNN-SAE
- COF
- Composite Recurrent Neural Networks (CRNN)
- computing
- Conditional Generative Adversarial Network – Gradient Penalty (WCGAN-GP)
- Genetic Algorithm (GA).
- Conditional Variational Autoencoder (CVAE)
- Convolutional Neural Network
- Convolutional Neural Network (CNN)
- Convolutional Neural Networks (CNN)
- COREBOT
- CORES
- Correlation analysis (CA)
- Cost-sensitive deep learning
- Cramer’s V
- CTGAN.
- Cuda-Bidirectional Long Short-Term Memory (BLSTM)
- Cuda-Deep Neural Network
- Custom KNN
- DA
- DAE
- DANN
- Data augmentation
- Davies-Meyer Compression Function
- DBM
- DBN
- DBN classifier
- DBN-LSTM
- DBNs
- DBSCAN.
- DCCNN-SMO
- DCNN
- DCNNBiLSTM
- DCRNN (Deep Residual Convolutional neural network)
- DDoS
- DDQN
- DE
- Decentralized learning.
- Decision Tree
- Decision Tree (DT)
- Decision Tree
- Random forest
- Decision Trees
- Decision Trees (DT)
- Deep Belief Network (DBN)
- Deep Belief Networks
- Deep Belief Networks (DBN)
- Deep Contractive Autoencoder (DCAE)
- Deep Learning
- Deep Learning (DL)
- Deep Neural Network
- Deep Neural Network (DNN)
- Deep Neural Networks (DNN)
- Deep Q-Learning
- Deep Q-Learning (DQL)
- Deep reinforcement learning
- Deep Sparse AutoEncoder
- DeepAK-IoT
- DeepLog
- Default RBF-SVM
- Deliberate Deep Reinforced Learning (DDRL) classification
- Denoising Autoencoder
- Deep Feedforward Neural Network
- Descriptive Statistical Methods
- DFF
- DGA
- Dice Loss
- Differential evolution
- Differential Private Stochastic Gradient Descent (DP-SGD)
- Digital Signature
- Digital Twin
- Discriminative Principal Component Analysis (DPCA)
- Distributed Stochastic Gradient Descent (SGD)
- DL
- DL-based Deep Packet inspection
- DNN
- DNN-based IDS
- DNN-RNN
- DoS GoldenEye
- DoS Hulk
- DoS Slowhttptest
- DoS slowloris
- DPA-FL (Defense against Poisoning Attacks in Federated Learning)
- DPMM
- DQL
- DQN
- DQN(Deep Q-Networks) - HIDS
- DRL
- DT
- DT (Decision Tree)
- DT (Ens-DT)
- DTC
- DT-ILIS
- DTL
- dynamic itemset counting
- Dynamic Segmentation.
- e KNearest Neighbors (KNN)
- EECA-LSTM
- Efficient-Net
- E-GraphSAGE
- EL
- ELIDS
- ELM
- Elman recurrent neural network
- EMLNN
- EMRFT
- Encoder–decoder neural network.
- Ensemble Learning
- Ensemble method selection
- Ensemble Modeling
- ET
- ETC
- E-Trees.
- Euclidean Distance
- Evaluation metrics
- Extra Tree (ET)
- Extra-Tree
- ExtraTrees
- eXtreme Gradient
- Extreme Gradient Boosting
- Extreme Gradient Boosting (XGBoost)
- Fast Gradient Sign Method (FGSM)
- FastABOD
- FastAI
- FCM+ SVM
- FDL-IDM (Federated Learning-based Intrusion Detection Model)
- FedAvg
- Federated Learning
- Federated Learning (FL)
- FedProx
- Feed Forward.
- Feed-Forward Neural Network
- Ferrag et al.
- FFA
- FFDNN.
- FFNN
- FGSM
- Firefly optimization algorithm
- FL
- Flow Expiration Manager
- FNN
- Focal Loss
- Friha et al
- FS-DL
- FTP-Patator
- Fully Convolutional Neural Network
- Fully-connected NN
- Fusion Multi-Tier DNN
- Fuzzy C-means
- Fuzzy C-means
- Bi-LSTM Algorithms
- fuzzy logic
- GA
- GA-LR
- game theory algorithm (GTA)
- GAN
- GANs
- Gated Recurrent Unit (GRU)
- Gated Recurrent Unit.
- Gated Recurrent Units (GRU)
- Gaussian Data Augmentation (GDA)
- GB
- GBDT
- GBM
- GBM (Gradient Boosting Machine)
- GBT
- GCNN
- GCNN (Graph Convolutional Neural Network)
- GDA Gaussian Data
- Generative Adversarial Network (GAN)
- Generative Adversarial Networks (GANs)
- Generative Pre-trained Transformer 2
- Genetic Algorithm
- Genetic Algorithm (GA)
- genetic algorithms
- Genetic Algorithms (GA)
- GHLBO-based DSA
- GLC
- G-Means
- GNB
- GNN
- GOA
- Gorilla Troops Optimization (GTO) algorithm
- GPCNN
- Gradient
- Gradient Boosting
- Gradient Boosting Decision Tree (GBDT)
- Gradient XGBoost
- Graph Convolutional Neural Network (GCNN)
- Graph Neural Network (GNN)
- Graph Referencing Normalization (GRN) algorithm
- Grasshopper optimization algorithm
- Gravitational Search Algorithm.
- Gray wolf optimization algorithm
- Grey Wolf Optimization (GWO)
- GRU
- GRU.
- GWO
- hard voting ensemble.
- HBO
- HBOS
- HCRNNIDS
- Heartbleed
- HFL-HLSTM
- HGBC
- HHH
- High Confidence (HC)
- HiLSTM
- HMM
- HSR-WSNs
- Hybrid AdaBoost-Random Forest
- Hybrid Classifier
- Hybrid Model
- Hybrid Models
- Hybrid packet inspection
- Hyperparameter tuning
- IBK
- IBL
- ICDBN-IDM
- IDS
- IDS-DBN
- IDS-DCNN
- IFA.
- iForest
- IGOA (Improved Gazelle Optimization Algorithm)
- IG-PCA
- Image Classification
- Inception-Net
- InceptionV3
- including Logistic Regression (LR)
- Infiltration
- Input Vector Matrix (IVM)
- Internet of things
- IoMT
- Isolation Forest
- Isolation Forest (IForest) Algorithm
- Isolation Forest (IsolationForest) [26]
- Isolation-Forest
- ITCM-KNN
- Iterative Dichotomiser 3 (ID3)
- Iterative Model Averaging
- Iterative Pruning Network
- J48
- Jacobian Saliency Map Attack (JSMA)
- K means
- K Nearest Neighbor
- KerasClassifier
- kernel ELM
- kernel PCA
- Kernel-Support Vector Machines
- K-FoldCrossValidation
- KL Divergence
- KMC
- K-Means
- K-Nearest Neighbor
- K-Nearest Neighbors
- k-Nearest Neighbors (kNN)
- k-Nearest Neighbors (k-NN)
- K-Nearest Neighbors (KNN)
- K-nearest Neighbors.
- kNN
- k-NN
- KNN
- KNN-PCA
- K-SVM
- Kuhn-
- LabelEncoder
- the SimpleImputer
- Large Language Model Prompt Engineering
- LASSO regression
- LB
- LDA
- LDCOF
- Learning-Driven Detection Mechanism (LEDEM)
- Least-Square SVM
- LGB
- LightGBM
- LIME (Local Interpretable Model-agnostic Explanations)
- linear
- Linear SVM
- Linear Weighted Projection Regression
- LLM
- LMNL
- LOF
- Logistic Regression
- Logistic Regression (LR)
- Logistic Regression Model
- Long Short-Term Memory (LSTM)
- Long Short-Term Memory (LSTM) networks
- Long Short-term Memory Networks
- LP
- LR
- LR (Logistic Regression)
- LSTM
- LSTM Autoencoder
- LSTM/CNN
- LSTM+CNN
- LSTM+Spark
- LSTM-based IDS
- LSTM-KPCA
- LSTM-RNN
- LSVM
- LWA (Learning With an Adversary)
- Machine Learning
- MaMPF
- MAMRL
- Manhattan Distance.
- Markle Tree: A tree structure used for data authentication MT
- Markov Decision Process
- Markov Decision Process (MDP)
- Masking
- MCA-LSTM
- M-CNN
- MD block
- Message Queuing Telemetry Transport MQTT
- MFS-MCDM
- MI
- ML with PCC
- IF
- MLP
- MLP + Fuzzy
- MLP 16
- MLP. RNN
- MMP
- MobileNetV3
- Modified Archery Algorithm
- MOE
- MOIA
- MRD module
- MRMR
- MRN
- Multilayer Perceptron
- multi-layer perceptron (MLP)
- Multilayer Perceptron (MLP)
- Multi-Layer Perceptron (MLP)
- multi-layer Transformer encoder
- Multinomial Naive Bayes (MNB)
- multi-party data model
- Multi-Scale Convolutional Neural Network
- Munkres algorithm
- Mutual information (MI)
- Naive Bayes
- Naïve Bayes
- Naive Bayes (NB)
- Naïve Bayes classifiers
- NaiveBayes
- Natural Language Processing
- NAV
- NB
- NBGOA (Novel Binary Grasshopper Optimization Algorithm)
- NDAE
- Network
- Neural
- Neural Network
- Neural-network
- NIDS
- NIDS classifiers
- NN
- NN
- Genetic algorithm
- NNs
- non-LP (NLP)
- OCSA
- OCSVM
- ODIN
- OLS
- One-Class Support Vector Machine (OC-SVM)
- One-Class Support Vector Machines(oSVM) [27]
- One-Class SVM
- On-ILIS
- optimization (PSO)
- Ordered Probit regression
- OSVM
- PART
- PART algorithm
- Particle Bee Colony Swarm (PBCS)
- Particle Swarm Optimization
- Particle Swarm Optimization (PSO)
- PCA
- PCC
- PC-IDS
- PCNN
- PENCIL
- PG
- PGD-AML
- Policy Engine
- Policy Administrator Module
- Polynomial-SVM
- PortScan
- Post-Processing Flows
- Principal Component Analysis (PCA)
- programming
- programming (LP)
- Projected Gradient Descent (PGD)
- Proposed DBN
- Proposed GRU-CNN
- Proposed HFS-ERF
- Proposed MM-WMVEDL
- PS-IPS
- PSO
- PSO-PNN
- Publisher side algorithm
- py-Custom
- PYKSPA
- Q-Learning
- QML
- Quadratic Discriminant Analysis (QDA)
- RAkEL
- RAMDO
- RAMNIT
- RandNN
- Random Forest
- Random Forest (RF)
- Random Forests (RFs)
- Random Projection
- Random Sampling
- Random Space (RS)
- Random Subspace Learning
- Random Subspace Learning
- K-Nearest Neighbor (RSL-KNN).
- Random Tree (RT)
- Random-Forest
- Randomized Matrix Factorization.
- RBM
- Recurrent Neural Network
- Recurrent Neural Networks (RNN)
- Recursive feature elimination
- ReduceLROnPlateau
- refined Bayesian equilibrium
- Reinforcement Learning
- Reinforcement learning (RL)
- ReLU
- ReLU activation function.
- ResNet50
- ResNet50–1D-CNN
- RESNETCNN
- ResNet-GRU
- ResNeXt
- RF
- RFA
- RFAA
- RFC
- RF-SVM
- RL
- RNN
- RNN) etc. Write comma separated.
- RNN.
- ROS (Random Over Sampling)
- RPFMI
- RT
- Rule-Based Algorithm
- Rule-Based Classifiers
- RUS (Random Under Sampling)
- SAE
- SDA
- SDN-based IPS
- SDO
- Self-Organizing Maps (SOM)
- Self-supervised Learning Mechanism
- Sequence data generation algorithm
- SGD
- SHAP (Shapley Additive exPlanations)
- Shapley Additive explanation (SHAP) analysis
- Partial Dependency Analysis (PDA)
- Siamese Neural Network
- Sigmoid
- Sigmoid-SVM
- Signature-based Detection.
- SIMDA
- Simple Multi-Tier DNN
- Simple RNN
- Simple Stacking
- Single DNN
- SLaveMPF
- SMF
- SMOTE
- SMOTE (Synthetic Minority Over-sampling Technique)
- S-NDAE
- soft voting
- SOM
- SPN
- SqueezeNet
- SRC
- SSAE
- SSH-Patator
- Stack Ensemble Learning
- stacked autoencoder (SAE)
- Stacked Auto-Encoders (SAE)
- Stacked Ensemble.
- Stacked sparse VAE
- Stacked unsupervised FL
- Stacked+ Autoencoder+SVM
- StandardScaler
- STIDE-3
- STIDE-4
- Stochastic Gradient Descent (SGD)
- Stochastic Gradient Descent one-Class Support Vector Machines (SGD-oSVM) [28]
- Streebog Cryptographic Substitution-Permutation Network (SCSPN)
- Subscriber Algorithm
- supervised classifier
- Supervised Learning
- Support Vector Machine
- Support Vector Machine (SVM)
- Support Vector Machines (SVMs)
- Support Vector Regression (SVR)
- SVD (Singular Value Decomposition)
- SVM
- SVM (Support Vector Machine)
- SVM-NN
- SVMs
- SVR
- TabNET
- TCN
- Temporal Convolutional Network (TCN)
- TF-IDF
- The paper compares the performance of the GAN-LSTM method against several other classification models
- The particle swarm
- Three-layer neural network
- Traditional LSTM
- Traditional Seq2Seq Encoder–Decoder
- Traffic-aware Self-supervised Learning for IoT Network Intrusion Detection System (TS-IDS)
- train decision tree (DT)
- Training-Free Clustering Algorithm
- Transfer Fuzzy Learning (TFL)
- Transfer Learning
- Transfer Learning Methodology
- Transformer
- Tri-layered NN
- TSCRNN
- UDAE algorithm
- UNet++
- VAERNN-AD
- Variational Autoencoder (VAE)
- Variational Bayes
- Variational Inference: Used in CNN-LSTM
- GRU-based BDL for time-series TCP/IP packets anomaly detection
- VGG-16
- VGG19
- VGG-19
- Voting Ensemble
- Waikato Environment for Knowledge Analysis (WEKA)
- Wasserstein
- Web Attack: Brute Force
- Web Attack: Sql Injection
- Web Attack: XSS
- Weighted Average Probabilities.
- WFEU FFDNN
- WOA
- XGB
- XGBoost
- XG-Boost
- XGBoost.
- Z-Score normalization
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement