druznek

Untitled

Jul 9th, 2020
509
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. -- MarI/O by SethBling
  2. -- Feel free to use this code, but please do not redistribute it.
  3. -- Intended for use with the BizHawk emulator and Super Mario World or Super Mario Bros. ROM.
  4. -- For SMW, make sure you have a save state named "DP1.state" at the beginning of a level,
  5. -- and put a copy in both the Lua folder and the root directory of BizHawk.
  6.  
  7. if gameinfo.getromname() == "Super Mario World (USA)" then
  8.     Filename = "DP1.state"
  9.     ButtonNames = {
  10.         "A",
  11.         "B",
  12.         "X",
  13.         "Y",
  14.         "Up",
  15.         "Down",
  16.         "Left",
  17.         "Right",
  18.     }
  19. elseif gameinfo.getromname() == "Super Mario Bros." then
  20.     Filename = "SMB1-1.state"
  21.     ButtonNames = {
  22.         "A",
  23.         "B",
  24.         "Up",
  25.         "Down",
  26.         "Left",
  27.         "Right",
  28.     }
  29. end
  30.  
  31. BoxRadius = 6
  32. InputSize = (BoxRadius*2+1)*(BoxRadius*2+1)
  33.  
  34. Inputs = InputSize+1
  35. Outputs = #ButtonNames
  36.  
  37. Population = 300
  38. DeltaDisjoint = 2.0
  39. DeltaWeights = 0.4
  40. DeltaThreshold = 1.0
  41.  
  42. StaleSpecies = 15
  43.  
  44. MutateConnectionsChance = 0.25
  45. PerturbChance = 0.90
  46. CrossoverChance = 0.75
  47. LinkMutationChance = 2.0
  48. NodeMutationChance = 0.50
  49. BiasMutationChance = 0.40
  50. StepSize = 0.1
  51. DisableMutationChance = 0.4
  52. EnableMutationChance = 0.2
  53.  
  54. TimeoutConstant = 20
  55.  
  56. MaxNodes = 1000000
  57.  
  58. function getPositions()
  59.     if gameinfo.getromname() == "Super Mario World (USA)" then
  60.         marioX = memory.read_s16_le(0x94)
  61.         marioY = memory.read_s16_le(0x96)
  62.        
  63.         local layer1x = memory.read_s16_le(0x1A);
  64.         local layer1y = memory.read_s16_le(0x1C);
  65.        
  66.         screenX = marioX-layer1x
  67.         screenY = marioY-layer1y
  68.     elseif gameinfo.getromname() == "Super Mario Bros." then
  69.         marioX = memory.readbyte(0x6D) * 0x100 + memory.readbyte(0x86)
  70.         marioY = memory.readbyte(0x03B8)+16
  71.    
  72.         screenX = memory.readbyte(0x03AD)
  73.         screenY = memory.readbyte(0x03B8)
  74.     end
  75. end
  76.  
  77. function getTile(dx, dy)
  78.     if gameinfo.getromname() == "Super Mario World (USA)" then
  79.         x = math.floor((marioX+dx+8)/16)
  80.         y = math.floor((marioY+dy)/16)
  81.        
  82.         return memory.readbyte(0x1C800 + math.floor(x/0x10)*0x1B0 + y*0x10 + x%0x10)
  83.     elseif gameinfo.getromname() == "Super Mario Bros." then
  84.         local x = marioX + dx + 8
  85.         local y = marioY + dy - 16
  86.         local page = math.floor(x/256)%2
  87.  
  88.         local subx = math.floor((x%256)/16)
  89.         local suby = math.floor((y - 32)/16)
  90.         local addr = 0x500 + page*13*16+suby*16+subx
  91.        
  92.         if suby >= 13 or suby < 0 then
  93.             return 0
  94.         end
  95.        
  96.         if memory.readbyte(addr) ~= 0 then
  97.             return 1
  98.         else
  99.             return 0
  100.         end
  101.     end
  102. end
  103.  
  104. function getSprites()
  105.     if gameinfo.getromname() == "Super Mario World (USA)" then
  106.         local sprites = {}
  107.         for slot=0,11 do
  108.             local status = memory.readbyte(0x14C8+slot)
  109.             if status ~= 0 then
  110.                 spritex = memory.readbyte(0xE4+slot) + memory.readbyte(0x14E0+slot)*256
  111.                 spritey = memory.readbyte(0xD8+slot) + memory.readbyte(0x14D4+slot)*256
  112.                 sprites[#sprites+1] = {["x"]=spritex, ["y"]=spritey}
  113.             end
  114.         end    
  115.        
  116.         return sprites
  117.     elseif gameinfo.getromname() == "Super Mario Bros." then
  118.         local sprites = {}
  119.         for slot=0,4 do
  120.             local enemy = memory.readbyte(0xF+slot)
  121.             if enemy ~= 0 then
  122.                 local ex = memory.readbyte(0x6E + slot)*0x100 + memory.readbyte(0x87+slot)
  123.                 local ey = memory.readbyte(0xCF + slot)+24
  124.                 sprites[#sprites+1] = {["x"]=ex,["y"]=ey}
  125.             end
  126.         end
  127.        
  128.         return sprites
  129.     end
  130. end
  131.  
  132. function getExtendedSprites()
  133.     if gameinfo.getromname() == "Super Mario World (USA)" then
  134.         local extended = {}
  135.         for slot=0,11 do
  136.             local number = memory.readbyte(0x170B+slot)
  137.             if number ~= 0 then
  138.                 spritex = memory.readbyte(0x171F+slot) + memory.readbyte(0x1733+slot)*256
  139.                 spritey = memory.readbyte(0x1715+slot) + memory.readbyte(0x1729+slot)*256
  140.                 extended[#extended+1] = {["x"]=spritex, ["y"]=spritey}
  141.             end
  142.         end    
  143.        
  144.         return extended
  145.     elseif gameinfo.getromname() == "Super Mario Bros." then
  146.         return {}
  147.     end
  148. end
  149.  
  150. function getInputs()
  151.     getPositions()
  152.    
  153.     sprites = getSprites()
  154.     extended = getExtendedSprites()
  155.    
  156.     local inputs = {}
  157.    
  158.     for dy=-BoxRadius*16,BoxRadius*16,16 do
  159.         for dx=-BoxRadius*16,BoxRadius*16,16 do
  160.             inputs[#inputs+1] = 0
  161.            
  162.             tile = getTile(dx, dy)
  163.             if tile == 1 and marioY+dy < 0x1B0 then
  164.                 inputs[#inputs] = 1
  165.             end
  166.            
  167.             for i = 1,#sprites do
  168.                 distx = math.abs(sprites[i]["x"] - (marioX+dx))
  169.                 disty = math.abs(sprites[i]["y"] - (marioY+dy))
  170.                 if distx <= 8 and disty <= 8 then
  171.                     inputs[#inputs] = -1
  172.                 end
  173.             end
  174.  
  175.             for i = 1,#extended do
  176.                 distx = math.abs(extended[i]["x"] - (marioX+dx))
  177.                 disty = math.abs(extended[i]["y"] - (marioY+dy))
  178.                 if distx < 8 and disty < 8 then
  179.                     inputs[#inputs] = -1
  180.                 end
  181.             end
  182.         end
  183.     end
  184.    
  185.     --mariovx = memory.read_s8(0x7B)
  186.     --mariovy = memory.read_s8(0x7D)
  187.    
  188.     return inputs
  189. end
  190.  
  191. function sigmoid(x)
  192.     return 2/(1+math.exp(-4.9*x))-1
  193. end
  194.  
  195. function newInnovation()
  196.     pool.innovation = pool.innovation + 1
  197.     return pool.innovation
  198. end
  199.  
  200. function newPool()
  201.     local pool = {}
  202.     pool.species = {}
  203.     pool.generation = 0
  204.     pool.innovation = Outputs
  205.     pool.currentSpecies = 1
  206.     pool.currentGenome = 1
  207.     pool.currentFrame = 0
  208.     pool.maxFitness = 0
  209.    
  210.     return pool
  211. end
  212.  
  213. function newSpecies()
  214.     local species = {}
  215.     species.topFitness = 0
  216.     species.staleness = 0
  217.     species.genomes = {}
  218.     species.averageFitness = 0
  219.    
  220.     return species
  221. end
  222.  
  223. function newGenome()
  224.     local genome = {}
  225.     genome.genes = {}
  226.     genome.fitness = 0
  227.     genome.adjustedFitness = 0
  228.     genome.network = {}
  229.     genome.maxneuron = 0
  230.     genome.globalRank = 0
  231.     genome.mutationRates = {}
  232.     genome.mutationRates["connections"] = MutateConnectionsChance
  233.     genome.mutationRates["link"] = LinkMutationChance
  234.     genome.mutationRates["bias"] = BiasMutationChance
  235.     genome.mutationRates["node"] = NodeMutationChance
  236.     genome.mutationRates["enable"] = EnableMutationChance
  237.     genome.mutationRates["disable"] = DisableMutationChance
  238.     genome.mutationRates["step"] = StepSize
  239.    
  240.     return genome
  241. end
  242.  
  243. function copyGenome(genome)
  244.     local genome2 = newGenome()
  245.     for g=1,#genome.genes do
  246.         table.insert(genome2.genes, copyGene(genome.genes[g]))
  247.     end
  248.     genome2.maxneuron = genome.maxneuron
  249.     genome2.mutationRates["connections"] = genome.mutationRates["connections"]
  250.     genome2.mutationRates["link"] = genome.mutationRates["link"]
  251.     genome2.mutationRates["bias"] = genome.mutationRates["bias"]
  252.     genome2.mutationRates["node"] = genome.mutationRates["node"]
  253.     genome2.mutationRates["enable"] = genome.mutationRates["enable"]
  254.     genome2.mutationRates["disable"] = genome.mutationRates["disable"]
  255.    
  256.     return genome2
  257. end
  258.  
  259. function basicGenome()
  260.     local genome = newGenome()
  261.     local innovation = 1
  262.  
  263.     genome.maxneuron = Inputs
  264.     mutate(genome)
  265.    
  266.     return genome
  267. end
  268.  
  269. function newGene()
  270.     local gene = {}
  271.     gene.into = 0
  272.     gene.out = 0
  273.     gene.weight = 0.0
  274.     gene.enabled = true
  275.     gene.innovation = 0
  276.    
  277.     return gene
  278. end
  279.  
  280. function copyGene(gene)
  281.     local gene2 = newGene()
  282.     gene2.into = gene.into
  283.     gene2.out = gene.out
  284.     gene2.weight = gene.weight
  285.     gene2.enabled = gene.enabled
  286.     gene2.innovation = gene.innovation
  287.    
  288.     return gene2
  289. end
  290.  
  291. function newNeuron()
  292.     local neuron = {}
  293.     neuron.incoming = {}
  294.     neuron.value = 0.0
  295.    
  296.     return neuron
  297. end
  298.  
  299. function generateNetwork(genome)
  300.     local network = {}
  301.     network.neurons = {}
  302.    
  303.     for i=1,Inputs do
  304.         network.neurons[i] = newNeuron()
  305.     end
  306.    
  307.     for o=1,Outputs do
  308.         network.neurons[MaxNodes+o] = newNeuron()
  309.     end
  310.    
  311.     table.sort(genome.genes, function (a,b)
  312.         return (a.out < b.out)
  313.     end)
  314.     for i=1,#genome.genes do
  315.         local gene = genome.genes[i]
  316.         if gene.enabled then
  317.             if network.neurons[gene.out] == nil then
  318.                 network.neurons[gene.out] = newNeuron()
  319.             end
  320.             local neuron = network.neurons[gene.out]
  321.             table.insert(neuron.incoming, gene)
  322.             if network.neurons[gene.into] == nil then
  323.                 network.neurons[gene.into] = newNeuron()
  324.             end
  325.         end
  326.     end
  327.    
  328.     genome.network = network
  329. end
  330.  
  331. function evaluateNetwork(network, inputs)
  332.     table.insert(inputs, 1)
  333.     if #inputs ~= Inputs then
  334.         console.writeline("Incorrect number of neural network inputs.")
  335.         return {}
  336.     end
  337.    
  338.     for i=1,Inputs do
  339.         network.neurons[i].value = inputs[i]
  340.     end
  341.    
  342.     for _,neuron in pairs(network.neurons) do
  343.         local sum = 0
  344.         for j = 1,#neuron.incoming do
  345.             local incoming = neuron.incoming[j]
  346.             local other = network.neurons[incoming.into]
  347.             sum = sum + incoming.weight * other.value
  348.         end
  349.        
  350.         if #neuron.incoming > 0 then
  351.             neuron.value = sigmoid(sum)
  352.         end
  353.     end
  354.    
  355.     local outputs = {}
  356.     for o=1,Outputs do
  357.         local button = "P1 " .. ButtonNames[o]
  358.         if network.neurons[MaxNodes+o].value > 0 then
  359.             outputs[button] = true
  360.         else
  361.             outputs[button] = false
  362.         end
  363.     end
  364.    
  365.     return outputs
  366. end
  367.  
  368. function crossover(g1, g2)
  369.     -- Make sure g1 is the higher fitness genome
  370.     if g2.fitness > g1.fitness then
  371.         tempg = g1
  372.         g1 = g2
  373.         g2 = tempg
  374.     end
  375.  
  376.     local child = newGenome()
  377.    
  378.     local innovations2 = {}
  379.     for i=1,#g2.genes do
  380.         local gene = g2.genes[i]
  381.         innovations2[gene.innovation] = gene
  382.     end
  383.    
  384.     for i=1,#g1.genes do
  385.         local gene1 = g1.genes[i]
  386.         local gene2 = innovations2[gene1.innovation]
  387.         if gene2 ~= nil and math.random(2) == 1 and gene2.enabled then
  388.             table.insert(child.genes, copyGene(gene2))
  389.         else
  390.             table.insert(child.genes, copyGene(gene1))
  391.         end
  392.     end
  393.    
  394.     child.maxneuron = math.max(g1.maxneuron,g2.maxneuron)
  395.    
  396.     for mutation,rate in pairs(g1.mutationRates) do
  397.         child.mutationRates[mutation] = rate
  398.     end
  399.    
  400.     return child
  401. end
  402.  
  403. function randomNeuron(genes, nonInput)
  404.     local neurons = {}
  405.     if not nonInput then
  406.         for i=1,Inputs do
  407.             neurons[i] = true
  408.         end
  409.     end
  410.     for o=1,Outputs do
  411.         neurons[MaxNodes+o] = true
  412.     end
  413.     for i=1,#genes do
  414.         if (not nonInput) or genes[i].into > Inputs then
  415.             neurons[genes[i].into] = true
  416.         end
  417.         if (not nonInput) or genes[i].out > Inputs then
  418.             neurons[genes[i].out] = true
  419.         end
  420.     end
  421.  
  422.     local count = 0
  423.     for _,_ in pairs(neurons) do
  424.         count = count + 1
  425.     end
  426.     local n = math.random(1, count)
  427.    
  428.     for k,v in pairs(neurons) do
  429.         n = n-1
  430.         if n == 0 then
  431.             return k
  432.         end
  433.     end
  434.    
  435.     return 0
  436. end
  437.  
  438. function containsLink(genes, link)
  439.     for i=1,#genes do
  440.         local gene = genes[i]
  441.         if gene.into == link.into and gene.out == link.out then
  442.             return true
  443.         end
  444.     end
  445. end
  446.  
  447. function pointMutate(genome)
  448.     local step = genome.mutationRates["step"]
  449.    
  450.     for i=1,#genome.genes do
  451.         local gene = genome.genes[i]
  452.         if math.random() < PerturbChance then
  453.             gene.weight = gene.weight + math.random() * step*2 - step
  454.         else
  455.             gene.weight = math.random()*4-2
  456.         end
  457.     end
  458. end
  459.  
  460. function linkMutate(genome, forceBias)
  461.     local neuron1 = randomNeuron(genome.genes, false)
  462.     local neuron2 = randomNeuron(genome.genes, true)
  463.      
  464.     local newLink = newGene()
  465.     if neuron1 <= Inputs and neuron2 <= Inputs then
  466.         --Both input nodes
  467.         return
  468.     end
  469.     if neuron2 <= Inputs then
  470.         -- Swap output and input
  471.         local temp = neuron1
  472.         neuron1 = neuron2
  473.         neuron2 = temp
  474.     end
  475.  
  476.     newLink.into = neuron1
  477.     newLink.out = neuron2
  478.     if forceBias then
  479.         newLink.into = Inputs
  480.     end
  481.    
  482.     if containsLink(genome.genes, newLink) then
  483.         return
  484.     end
  485.     newLink.innovation = newInnovation()
  486.     newLink.weight = math.random()*4-2
  487.    
  488.     table.insert(genome.genes, newLink)
  489. end
  490.  
  491. function nodeMutate(genome)
  492.     if #genome.genes == 0 then
  493.         return
  494.     end
  495.  
  496.     genome.maxneuron = genome.maxneuron + 1
  497.  
  498.     local gene = genome.genes[math.random(1,#genome.genes)]
  499.     if not gene.enabled then
  500.         return
  501.     end
  502.     gene.enabled = false
  503.    
  504.     local gene1 = copyGene(gene)
  505.     gene1.out = genome.maxneuron
  506.     gene1.weight = 1.0
  507.     gene1.innovation = newInnovation()
  508.     gene1.enabled = true
  509.     table.insert(genome.genes, gene1)
  510.    
  511.     local gene2 = copyGene(gene)
  512.     gene2.into = genome.maxneuron
  513.     gene2.innovation = newInnovation()
  514.     gene2.enabled = true
  515.     table.insert(genome.genes, gene2)
  516. end
  517.  
  518. function enableDisableMutate(genome, enable)
  519.     local candidates = {}
  520.     for _,gene in pairs(genome.genes) do
  521.         if gene.enabled == not enable then
  522.             table.insert(candidates, gene)
  523.         end
  524.     end
  525.    
  526.     if #candidates == 0 then
  527.         return
  528.     end
  529.    
  530.     local gene = candidates[math.random(1,#candidates)]
  531.     gene.enabled = not gene.enabled
  532. end
  533.  
  534. function mutate(genome)
  535.     for mutation,rate in pairs(genome.mutationRates) do
  536.         if math.random(1,2) == 1 then
  537.             genome.mutationRates[mutation] = 0.95*rate
  538.         else
  539.             genome.mutationRates[mutation] = 1.05263*rate
  540.         end
  541.     end
  542.  
  543.     if math.random() < genome.mutationRates["connections"] then
  544.         pointMutate(genome)
  545.     end
  546.    
  547.     local p = genome.mutationRates["link"]
  548.     while p > 0 do
  549.         if math.random() < p then
  550.             linkMutate(genome, false)
  551.         end
  552.         p = p - 1
  553.     end
  554.  
  555.     p = genome.mutationRates["bias"]
  556.     while p > 0 do
  557.         if math.random() < p then
  558.             linkMutate(genome, true)
  559.         end
  560.         p = p - 1
  561.     end
  562.    
  563.     p = genome.mutationRates["node"]
  564.     while p > 0 do
  565.         if math.random() < p then
  566.             nodeMutate(genome)
  567.         end
  568.         p = p - 1
  569.     end
  570.    
  571.     p = genome.mutationRates["enable"]
  572.     while p > 0 do
  573.         if math.random() < p then
  574.             enableDisableMutate(genome, true)
  575.         end
  576.         p = p - 1
  577.     end
  578.  
  579.     p = genome.mutationRates["disable"]
  580.     while p > 0 do
  581.         if math.random() < p then
  582.             enableDisableMutate(genome, false)
  583.         end
  584.         p = p - 1
  585.     end
  586. end
  587.  
  588. function disjoint(genes1, genes2)
  589.     local i1 = {}
  590.     for i = 1,#genes1 do
  591.         local gene = genes1[i]
  592.         i1[gene.innovation] = true
  593.     end
  594.  
  595.     local i2 = {}
  596.     for i = 1,#genes2 do
  597.         local gene = genes2[i]
  598.         i2[gene.innovation] = true
  599.     end
  600.    
  601.     local disjointGenes = 0
  602.     for i = 1,#genes1 do
  603.         local gene = genes1[i]
  604.         if not i2[gene.innovation] then
  605.             disjointGenes = disjointGenes+1
  606.         end
  607.     end
  608.    
  609.     for i = 1,#genes2 do
  610.         local gene = genes2[i]
  611.         if not i1[gene.innovation] then
  612.             disjointGenes = disjointGenes+1
  613.         end
  614.     end
  615.    
  616.     local n = math.max(#genes1, #genes2)
  617.    
  618.     return disjointGenes / n
  619. end
  620.  
  621. function weights(genes1, genes2)
  622.     local i2 = {}
  623.     for i = 1,#genes2 do
  624.         local gene = genes2[i]
  625.         i2[gene.innovation] = gene
  626.     end
  627.  
  628.     local sum = 0
  629.     local coincident = 0
  630.     for i = 1,#genes1 do
  631.         local gene = genes1[i]
  632.         if i2[gene.innovation] ~= nil then
  633.             local gene2 = i2[gene.innovation]
  634.             sum = sum + math.abs(gene.weight - gene2.weight)
  635.             coincident = coincident + 1
  636.         end
  637.     end
  638.    
  639.     return sum / coincident
  640. end
  641.    
  642. function sameSpecies(genome1, genome2)
  643.     local dd = DeltaDisjoint*disjoint(genome1.genes, genome2.genes)
  644.     local dw = DeltaWeights*weights(genome1.genes, genome2.genes)
  645.     return dd + dw < DeltaThreshold
  646. end
  647.  
  648. function rankGlobally()
  649.     local global = {}
  650.     for s = 1,#pool.species do
  651.         local species = pool.species[s]
  652.         for g = 1,#species.genomes do
  653.             table.insert(global, species.genomes[g])
  654.         end
  655.     end
  656.     table.sort(global, function (a,b)
  657.         return (a.fitness < b.fitness)
  658.     end)
  659.    
  660.     for g=1,#global do
  661.         global[g].globalRank = g
  662.     end
  663. end
  664.  
  665. function calculateAverageFitness(species)
  666.     local total = 0
  667.    
  668.     for g=1,#species.genomes do
  669.         local genome = species.genomes[g]
  670.         total = total + genome.globalRank
  671.     end
  672.    
  673.     species.averageFitness = total / #species.genomes
  674. end
  675.  
  676. function totalAverageFitness()
  677.     local total = 0
  678.     for s = 1,#pool.species do
  679.         local species = pool.species[s]
  680.         total = total + species.averageFitness
  681.     end
  682.  
  683.     return total
  684. end
  685.  
  686. function cullSpecies(cutToOne)
  687.     for s = 1,#pool.species do
  688.         local species = pool.species[s]
  689.        
  690.         table.sort(species.genomes, function (a,b)
  691.             return (a.fitness > b.fitness)
  692.         end)
  693.        
  694.         local remaining = math.ceil(#species.genomes/2)
  695.         if cutToOne then
  696.             remaining = 1
  697.         end
  698.         while #species.genomes > remaining do
  699.             table.remove(species.genomes)
  700.         end
  701.     end
  702. end
  703.  
  704. function breedChild(species)
  705.     local child = {}
  706.     if math.random() < CrossoverChance then
  707.         g1 = species.genomes[math.random(1, #species.genomes)]
  708.         g2 = species.genomes[math.random(1, #species.genomes)]
  709.         child = crossover(g1, g2)
  710.     else
  711.         g = species.genomes[math.random(1, #species.genomes)]
  712.         child = copyGenome(g)
  713.     end
  714.    
  715.     mutate(child)
  716.    
  717.     return child
  718. end
  719.  
  720. function removeStaleSpecies()
  721.     local survived = {}
  722.  
  723.     for s = 1,#pool.species do
  724.         local species = pool.species[s]
  725.        
  726.         table.sort(species.genomes, function (a,b)
  727.             return (a.fitness > b.fitness)
  728.         end)
  729.        
  730.         if species.genomes[1].fitness > species.topFitness then
  731.             species.topFitness = species.genomes[1].fitness
  732.             species.staleness = 0
  733.         else
  734.             species.staleness = species.staleness + 1
  735.         end
  736.         if species.staleness < StaleSpecies or species.topFitness >= pool.maxFitness then
  737.             table.insert(survived, species)
  738.         end
  739.     end
  740.  
  741.     pool.species = survived
  742. end
  743.  
  744. function removeWeakSpecies()
  745.     local survived = {}
  746.  
  747.     local sum = totalAverageFitness()
  748.     for s = 1,#pool.species do
  749.         local species = pool.species[s]
  750.         breed = math.floor(species.averageFitness / sum * Population)
  751.         if breed >= 1 then
  752.             table.insert(survived, species)
  753.         end
  754.     end
  755.  
  756.     pool.species = survived
  757. end
  758.  
  759.  
  760. function addToSpecies(child)
  761.     local foundSpecies = false
  762.     for s=1,#pool.species do
  763.         local species = pool.species[s]
  764.         if not foundSpecies and sameSpecies(child, species.genomes[1]) then
  765.             table.insert(species.genomes, child)
  766.             foundSpecies = true
  767.         end
  768.     end
  769.    
  770.     if not foundSpecies then
  771.         local childSpecies = newSpecies()
  772.         table.insert(childSpecies.genomes, child)
  773.         table.insert(pool.species, childSpecies)
  774.     end
  775. end
  776.  
  777. function newGeneration()
  778.     cullSpecies(false) -- Cull the bottom half of each species
  779.     rankGlobally()
  780.     removeStaleSpecies()
  781.     rankGlobally()
  782.     for s = 1,#pool.species do
  783.         local species = pool.species[s]
  784.         calculateAverageFitness(species)
  785.     end
  786.     removeWeakSpecies()
  787.     local sum = totalAverageFitness()
  788.     local children = {}
  789.     for s = 1,#pool.species do
  790.         local species = pool.species[s]
  791.         breed = math.floor(species.averageFitness / sum * Population) - 1
  792.         for i=1,breed do
  793.             table.insert(children, breedChild(species))
  794.         end
  795.     end
  796.     cullSpecies(true) -- Cull all but the top member of each species
  797.     while #children + #pool.species < Population do
  798.         local species = pool.species[math.random(1, #pool.species)]
  799.         table.insert(children, breedChild(species))
  800.     end
  801.     for c=1,#children do
  802.         local child = children[c]
  803.         addToSpecies(child)
  804.     end
  805.    
  806.     pool.generation = pool.generation + 1
  807.    
  808.     writeFile("backup." .. pool.generation .. "." .. forms.gettext(saveLoadFile))
  809. end
  810.    
  811. function initializePool()
  812.     pool = newPool()
  813.  
  814.     for i=1,Population do
  815.         basic = basicGenome()
  816.         addToSpecies(basic)
  817.     end
  818.  
  819.     initializeRun()
  820. end
  821.  
  822. function clearJoypad()
  823.     controller = {}
  824.     for b = 1,#ButtonNames do
  825.         controller["P1 " .. ButtonNames[b]] = false
  826.     end
  827.     joypad.set(controller)
  828. end
  829.  
  830. function initializeRun()
  831.     savestate.load(Filename);
  832.     rightmost = 0
  833.     pool.currentFrame = 0
  834.     timeout = TimeoutConstant
  835.     clearJoypad()
  836.    
  837.     local species = pool.species[pool.currentSpecies]
  838.     local genome = species.genomes[pool.currentGenome]
  839.     generateNetwork(genome)
  840.     evaluateCurrent()
  841. end
  842.  
  843. function evaluateCurrent()
  844.     local species = pool.species[pool.currentSpecies]
  845.     local genome = species.genomes[pool.currentGenome]
  846.  
  847.     inputs = getInputs()
  848.     controller = evaluateNetwork(genome.network, inputs)
  849.    
  850.     if controller["P1 Left"] and controller["P1 Right"] then
  851.         controller["P1 Left"] = false
  852.         controller["P1 Right"] = false
  853.     end
  854.     if controller["P1 Up"] and controller["P1 Down"] then
  855.         controller["P1 Up"] = false
  856.         controller["P1 Down"] = false
  857.     end
  858.  
  859.     joypad.set(controller)
  860. end
  861.  
  862. if pool == nil then
  863.     initializePool()
  864. end
  865.  
  866.  
  867. function nextGenome()
  868.     pool.currentGenome = pool.currentGenome + 1
  869.     if pool.currentGenome > #pool.species[pool.currentSpecies].genomes then
  870.         pool.currentGenome = 1
  871.         pool.currentSpecies = pool.currentSpecies+1
  872.         if pool.currentSpecies > #pool.species then
  873.             newGeneration()
  874.             pool.currentSpecies = 1
  875.         end
  876.     end
  877. end
  878.  
  879. function fitnessAlreadyMeasured()
  880.     local species = pool.species[pool.currentSpecies]
  881.     local genome = species.genomes[pool.currentGenome]
  882.    
  883.     return genome.fitness ~= 0
  884. end
  885.  
  886. function displayGenome(genome)
  887.     local network = genome.network
  888.     local cells = {}
  889.     local i = 1
  890.     local cell = {}
  891.     for dy=-BoxRadius,BoxRadius do
  892.         for dx=-BoxRadius,BoxRadius do
  893.             cell = {}
  894.             cell.x = 50+5*dx
  895.             cell.y = 70+5*dy
  896.             cell.value = network.neurons[i].value
  897.             cells[i] = cell
  898.             i = i + 1
  899.         end
  900.     end
  901.     local biasCell = {}
  902.     biasCell.x = 80
  903.     biasCell.y = 110
  904.     biasCell.value = network.neurons[Inputs].value
  905.     cells[Inputs] = biasCell
  906.    
  907.     for o = 1,Outputs do
  908.         cell = {}
  909.         cell.x = 220
  910.         cell.y = 30 + 8 * o
  911.         cell.value = network.neurons[MaxNodes + o].value
  912.         cells[MaxNodes+o] = cell
  913.         local color
  914.         if cell.value > 0 then
  915.             color = 0xFF0000FF
  916.         else
  917.             color = 0xFF000000
  918.         end
  919.         gui.drawText(223, 24+8*o, ButtonNames[o], color, 9)
  920.     end
  921.    
  922.     for n,neuron in pairs(network.neurons) do
  923.         cell = {}
  924.         if n > Inputs and n <= MaxNodes then
  925.             cell.x = 140
  926.             cell.y = 40
  927.             cell.value = neuron.value
  928.             cells[n] = cell
  929.         end
  930.     end
  931.    
  932.     for n=1,4 do
  933.         for _,gene in pairs(genome.genes) do
  934.             if gene.enabled then
  935.                 local c1 = cells[gene.into]
  936.                 local c2 = cells[gene.out]
  937.                 if gene.into > Inputs and gene.into <= MaxNodes then
  938.                     c1.x = 0.75*c1.x + 0.25*c2.x
  939.                     if c1.x >= c2.x then
  940.                         c1.x = c1.x - 40
  941.                     end
  942.                     if c1.x < 90 then
  943.                         c1.x = 90
  944.                     end
  945.                    
  946.                     if c1.x > 220 then
  947.                         c1.x = 220
  948.                     end
  949.                     c1.y = 0.75*c1.y + 0.25*c2.y
  950.                    
  951.                 end
  952.                 if gene.out > Inputs and gene.out <= MaxNodes then
  953.                     c2.x = 0.25*c1.x + 0.75*c2.x
  954.                     if c1.x >= c2.x then
  955.                         c2.x = c2.x + 40
  956.                     end
  957.                     if c2.x < 90 then
  958.                         c2.x = 90
  959.                     end
  960.                     if c2.x > 220 then
  961.                         c2.x = 220
  962.                     end
  963.                     c2.y = 0.25*c1.y + 0.75*c2.y
  964.                 end
  965.             end
  966.         end
  967.     end
  968.    
  969.     gui.drawBox(50-BoxRadius*5-3,70-BoxRadius*5-3,50+BoxRadius*5+2,70+BoxRadius*5+2,0xFF000000, 0x80808080)
  970.     for n,cell in pairs(cells) do
  971.         if n > Inputs or cell.value ~= 0 then
  972.             local color = math.floor((cell.value+1)/2*256)
  973.             if color > 255 then color = 255 end
  974.             if color < 0 then color = 0 end
  975.             local opacity = 0xFF000000
  976.             if cell.value == 0 then
  977.                 opacity = 0x50000000
  978.             end
  979.             color = opacity + color*0x10000 + color*0x100 + color
  980.             gui.drawBox(cell.x-2,cell.y-2,cell.x+2,cell.y+2,opacity,color)
  981.         end
  982.     end
  983.     for _,gene in pairs(genome.genes) do
  984.         if gene.enabled then
  985.             local c1 = cells[gene.into]
  986.             local c2 = cells[gene.out]
  987.             local opacity = 0xA0000000
  988.             if c1.value == 0 then
  989.                 opacity = 0x20000000
  990.             end
  991.            
  992.             local color = 0x80-math.floor(math.abs(sigmoid(gene.weight))*0x80)
  993.             if gene.weight > 0 then
  994.                 color = opacity + 0x8000 + 0x10000*color
  995.             else
  996.                 color = opacity + 0x800000 + 0x100*color
  997.             end
  998.             gui.drawLine(c1.x+1, c1.y, c2.x-3, c2.y, color)
  999.         end
  1000.     end
  1001.    
  1002.     gui.drawBox(49,71,51,78,0x00000000,0x80FF0000)
  1003.    
  1004.     if forms.ischecked(showMutationRates) then
  1005.         local pos = 100
  1006.         for mutation,rate in pairs(genome.mutationRates) do
  1007.             gui.drawText(100, pos, mutation .. ": " .. rate, 0xFF000000, 10)
  1008.             pos = pos + 8
  1009.         end
  1010.     end
  1011. end
  1012.  
  1013. function writeFile(filename)
  1014.         local file = io.open(filename, "w")
  1015.     file:write(pool.generation .. "\n")
  1016.     file:write(pool.maxFitness .. "\n")
  1017.     file:write(#pool.species .. "\n")
  1018.         for n,species in pairs(pool.species) do
  1019.         file:write(species.topFitness .. "\n")
  1020.         file:write(species.staleness .. "\n")
  1021.         file:write(#species.genomes .. "\n")
  1022.         for m,genome in pairs(species.genomes) do
  1023.             file:write(genome.fitness .. "\n")
  1024.             file:write(genome.maxneuron .. "\n")
  1025.             for mutation,rate in pairs(genome.mutationRates) do
  1026.                 file:write(mutation .. "\n")
  1027.                 file:write(rate .. "\n")
  1028.             end
  1029.             file:write("done\n")
  1030.            
  1031.             file:write(#genome.genes .. "\n")
  1032.             for l,gene in pairs(genome.genes) do
  1033.                 file:write(gene.into .. " ")
  1034.                 file:write(gene.out .. " ")
  1035.                 file:write(gene.weight .. " ")
  1036.                 file:write(gene.innovation .. " ")
  1037.                 if(gene.enabled) then
  1038.                     file:write("1\n")
  1039.                 else
  1040.                     file:write("0\n")
  1041.                 end
  1042.             end
  1043.         end
  1044.         end
  1045.         file:close()
  1046. end
  1047.  
  1048. function savePool()
  1049.     local filename = forms.gettext(saveLoadFile)
  1050.     writeFile(filename)
  1051. end
  1052.  
  1053. function loadFile(filename)
  1054.         local file = io.open(filename, "r")
  1055.     pool = newPool()
  1056.     pool.generation = file:read("*number")
  1057.     pool.maxFitness = file:read("*number")
  1058.     forms.settext(maxFitnessLabel, "Max Fitness: " .. math.floor(pool.maxFitness))
  1059.         local numSpecies = file:read("*number")
  1060.         for s=1,numSpecies do
  1061.         local species = newSpecies()
  1062.         table.insert(pool.species, species)
  1063.         species.topFitness = file:read("*number")
  1064.         species.staleness = file:read("*number")
  1065.         local numGenomes = file:read("*number")
  1066.         for g=1,numGenomes do
  1067.             local genome = newGenome()
  1068.             table.insert(species.genomes, genome)
  1069.             genome.fitness = file:read("*number")
  1070.             genome.maxneuron = file:read("*number")
  1071.             local line = file:read("*line")
  1072.             while line ~= "done" do
  1073.                 genome.mutationRates[line] = file:read("*number")
  1074.                 line = file:read("*line")
  1075.             end
  1076.             local numGenes = file:read("*number")
  1077.             for n=1,numGenes do
  1078.                 local gene = newGene()
  1079.                 table.insert(genome.genes, gene)
  1080.                 local enabled
  1081.                 gene.into, gene.out, gene.weight, gene.innovation, enabled = file:read("*number", "*number", "*number", "*number", "*number")
  1082.                 if enabled == 0 then
  1083.                     gene.enabled = false
  1084.                 else
  1085.                     gene.enabled = true
  1086.                 end
  1087.                
  1088.             end
  1089.         end
  1090.     end
  1091.         file:close()
  1092.    
  1093.     while fitnessAlreadyMeasured() do
  1094.         nextGenome()
  1095.     end
  1096.     initializeRun()
  1097.     pool.currentFrame = pool.currentFrame + 1
  1098. end
  1099.  
  1100. function loadPool()
  1101.     local filename = forms.gettext(saveLoadFile)
  1102.     loadFile(filename)
  1103. end
  1104.  
  1105. function playTop()
  1106.     local maxfitness = 0
  1107.     local maxs, maxg
  1108.     for s,species in pairs(pool.species) do
  1109.         for g,genome in pairs(species.genomes) do
  1110.             if genome.fitness > maxfitness then
  1111.                 maxfitness = genome.fitness
  1112.                 maxs = s
  1113.                 maxg = g
  1114.             end
  1115.         end
  1116.     end
  1117.    
  1118.     pool.currentSpecies = maxs
  1119.     pool.currentGenome = maxg
  1120.     pool.maxFitness = maxfitness
  1121.     forms.settext(maxFitnessLabel, "Max Fitness: " .. math.floor(pool.maxFitness))
  1122.     initializeRun()
  1123.     pool.currentFrame = pool.currentFrame + 1
  1124.     return
  1125. end
  1126.  
  1127. function onExit()
  1128.     forms.destroy(form)
  1129. end
  1130.  
  1131. writeFile("temp.pool")
  1132.  
  1133. event.onexit(onExit)
  1134.  
  1135. form = forms.newform(200, 260, "Fitness")
  1136. maxFitnessLabel = forms.label(form, "Max Fitness: " .. math.floor(pool.maxFitness), 5, 8)
  1137. showNetwork = forms.checkbox(form, "Show Map", 5, 30)
  1138. showMutationRates = forms.checkbox(form, "Show M-Rates", 5, 52)
  1139. restartButton = forms.button(form, "Restart", initializePool, 5, 77)
  1140. saveButton = forms.button(form, "Save", savePool, 5, 102)
  1141. loadButton = forms.button(form, "Load", loadPool, 80, 102)
  1142. saveLoadFile = forms.textbox(form, Filename .. ".pool", 170, 25, nil, 5, 148)
  1143. saveLoadLabel = forms.label(form, "Save/Load:", 5, 129)
  1144. playTopButton = forms.button(form, "Play Top", playTop, 5, 170)
  1145. hideBanner = forms.checkbox(form, "Hide Banner", 5, 190)
  1146.  
  1147.  
  1148. while true do
  1149.     local backgroundColor = 0xD0FFFFFF
  1150.     if not forms.ischecked(hideBanner) then
  1151.         gui.drawBox(0, 0, 300, 26, backgroundColor, backgroundColor)
  1152.     end
  1153.  
  1154.     local species = pool.species[pool.currentSpecies]
  1155.     local genome = species.genomes[pool.currentGenome]
  1156.    
  1157.     if forms.ischecked(showNetwork) then
  1158.         displayGenome(genome)
  1159.     end
  1160.    
  1161.     if pool.currentFrame%5 == 0 then
  1162.         evaluateCurrent()
  1163.     end
  1164.  
  1165.     joypad.set(controller)
  1166.  
  1167.     getPositions()
  1168.     if marioX > rightmost then
  1169.         rightmost = marioX
  1170.         timeout = TimeoutConstant
  1171.     end
  1172.    
  1173.     timeout = timeout - 1
  1174.    
  1175.    
  1176.     local timeoutBonus = pool.currentFrame / 4
  1177.     if timeout + timeoutBonus <= 0 then
  1178.         local fitness = rightmost - pool.currentFrame / 2
  1179.         if gameinfo.getromname() == "Super Mario World (USA)" and rightmost > 4816 then
  1180.             fitness = fitness + 1000
  1181.         end
  1182.         if gameinfo.getromname() == "Super Mario Bros." and rightmost > 3186 then
  1183.             fitness = fitness + 1000
  1184.         end
  1185.         if fitness == 0 then
  1186.             fitness = -1
  1187.         end
  1188.         genome.fitness = fitness
  1189.        
  1190.         if fitness > pool.maxFitness then
  1191.             pool.maxFitness = fitness
  1192.             forms.settext(maxFitnessLabel, "Max Fitness: " .. math.floor(pool.maxFitness))
  1193.             writeFile("backup." .. pool.generation .. "." .. forms.gettext(saveLoadFile))
  1194.         end
  1195.        
  1196.         console.writeline("Gen " .. pool.generation .. " species " .. pool.currentSpecies .. " genome " .. pool.currentGenome .. " fitness: " .. fitness)
  1197.         pool.currentSpecies = 1
  1198.         pool.currentGenome = 1
  1199.         while fitnessAlreadyMeasured() do
  1200.             nextGenome()
  1201.         end
  1202.         initializeRun()
  1203.     end
  1204.  
  1205.     local measured = 0
  1206.     local total = 0
  1207.     for _,species in pairs(pool.species) do
  1208.         for _,genome in pairs(species.genomes) do
  1209.             total = total + 1
  1210.             if genome.fitness ~= 0 then
  1211.                 measured = measured + 1
  1212.             end
  1213.         end
  1214.     end
  1215.     if not forms.ischecked(hideBanner) then
  1216.         gui.drawText(0, 0, "Gen " .. pool.generation .. " species " .. pool.currentSpecies .. " genome " .. pool.currentGenome .. " (" .. math.floor(measured/total*100) .. "%)", 0xFF000000, 11)
  1217.         gui.drawText(0, 12, "Fitness: " .. math.floor(rightmost - (pool.currentFrame) / 2 - (timeout + timeoutBonus)*2/3), 0xFF000000, 11)
  1218.         gui.drawText(100, 12, "Max Fitness: " .. math.floor(pool.maxFitness), 0xFF000000, 11)
  1219.     end
  1220.        
  1221.     pool.currentFrame = pool.currentFrame + 1
  1222.  
  1223.     emu.frameadvance();
  1224. end
Add Comment
Please, Sign In to add comment