Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- \documentclass[14pt]{article}
- \usepackage[utf8]{inputenc}
- \usepackage{ulem}
- \usepackage{amsmath}
- \usepackage{amssymb}
- \usepackage{multirow}
- \title{Document 1 - Basics}
- \author{Thomas Boufikos}
- \date{September 2021}
- \begin{document}
- \maketitle
- \section{Text Manipulation}
- Normal text size. \\
- {\LARGE Large text size.} \\
- {\LARGE This text contains only one {\LARGE LARGER} word (LARGE in LARGE).} \\
- Back to normal size \\
- \\
- \textbf{Bold only} \\
- \textit{Italic only} \\
- \underline{Underline only} \\
- \textbf{\textit{Bold and Italic}} \\
- \underline{\textit{Italic and Underline}} \\
- \textbf{\underline{Bold and Underline}} \\
- \uuline{Double underlined from ulem library} \\
- \uwave{Wavy underlined from ulem library} \\
- \\
- {\LARGE Left justification} \\
- \begin{flushleft}
- This is the 1st line. \\
- This is the 2nd line. \\
- This is the 3rd one. \\
- \end{flushleft}
- {\LARGE Centered} \\
- \begin{center}
- This is the 1st line. \\
- This is the 2nd line. \\
- This is the 3rd one. \\
- \end{center}
- {\LARGE Right justification} \\
- \begin{flushright}
- This is the 1st line. \\
- This is the 2nd line. \\
- This is the 3rd one. \\
- \end{flushright}
- \\ \\
- {\LARGE Paragraphs are created after a blank line} \\
- First one with identation.
- \noindent Second one without.
- Third one with.
- \noindent Fourth one without
- \section{Math manipulation} \\
- There are 2 ways for this: a) display mode and b) inline mode. \\ \\ \\
- \underline{{\LARGE a) Display math mode}} \\
- Notice that by substitution we have the following equation:
- \[
- f(x) = a_2x^2 + a_1x + a_0 \]
- \[
- = 4x^2 + 4x + 1
- \]
- By completing the squares, we have:
- \[
- f(x) = (2x+1)^2
- \]
- \\ \\
- \underline{{\LARGE Second way with align}} \\ \\
- Notice that by substitution we have the following equation: \\
- \begin{align}
- f(x) & = a_2x^2 + a_1x + a_0 \\
- & = 4x^2 + 4x + 1
- \end{align}
- \\ \\
- \underline{\LARGE Align* method with 3 equations (ams math)}}
- \\ \\
- \begin{align*}
- 2x + 1 & = 9 & 3y + 5 & = 11 & 4z - 6 & = 24 \\
- 2x & = 8 & 3y & = 6 & 4z & = 28 \\
- x & = 4 & y & = 2 & z & = 7 \\
- \end{align*}
- \\ \\ \\ \\
- \underline{{\LARGE b) Inline math mode}} \\
- Notice that by substitution we have the following equation: \( f(x) = a_2x^2 + a_1x + a_0 = 4x^2 + 4x + 1 \). That means we can also complete the square by this way: $ f(x) = (2x+1)^2 $. These are the 2 solutions. \\
- The area of a circle is:
- \[ E = \pi \cdot r^2\] \\
- where \( E \) is the area of the circle, \( \pi \) = 3.14159.... and $ r $ is the radius.
- \\ \\
- \underline{{\LARGE Math methods}} \\ \\
- We know that Euler proved that (display math mode):
- \[
- \sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}
- \]
- We know that (inline math mode): \( \sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6} \)
- \\ \\ \\
- \underline{{\LARGE Basic Arithmetic operations}} \\ \\
- 2 + 3 = 5 \\
- 4 - 1 = 3 \\
- 5 \cdot 4 = 20 \\
- 12 \times 4 = 48 \\
- 25 \div 5 = 5 \\
- 8 \cdot \frac{3}{4} = 6 \\
- Here we are! We will make the following prove:
- \[
- f(x) = (a_1^{\frac{1}{b_1}} \cdot a_2^{\frac{1}{b_2}}) ^ {b_1b_2x} = (a_1^{b_2}a_2^{b_1})^x
- \]
- Nice done! Let's move on the next task.
- If $ a $ belongs to $\mathbb{R}$ and $ a > 1 $ , we have the following:
- \[
- \left( \sum_{n=0}^\infty \left( \frac{1}{a} \right) \right)^2 = \left( \sum_{n=0}^\infty \left( a^{-1} \right) \right)^2 = \left( \frac{1}{1-a^{-1}} \right)^2 = \frac{1}{1-2a+a^2}
- \]
- \\ \\ \\
- \section{Tables}
- \begin{tabular}{l|c|r}
- \hline
- 1 & 2 & 3 \\
- \hline
- Element 1 & Room 2 & $a = 3$ \\
- \hline
- 4 & 5 & 6 \\
- \hline
- 5 \cdot 4 & $ \mathbb{C} $ & $ \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$\\
- \hline
- \end{tabular}
- \\ \\ \\
- \begin{tabular}{|c|c||c|c|}
- \hline
- Distance(km) & Velocity(km/hr) & Time \\
- \hline
- 10 & 5 & 2 hours = 120 minutes \\
- \hline
- 20 & 80 & 0.25 hrs = 15 minutes \\
- \hline
- 1 & 60 & $\frac{1}{60}$ hrs = 60 seconds \\
- \hline
- \end{tabular}
- \\ \\ \\
- \begin{tabular}{|c|c|c|}
- \hline
- X & & \\
- \hline
- O & X & \\
- \hline
- O & O & X \\
- \hline
- \end{tabular}
- \\ \\ \\
- \begin{tabular}{|l|c|c|r|}
- \hline
- \multicolumn{3}{|r|}{Right 3 columns} & Right a_{14} \\
- \hline
- \multirow{2}{*}{Top 2} & Center a_{22} & Center a_{23} & Also Right a_{24} \\
- & Center a_{32} & Center a_{33} & Also Right a_{34} \\
- \hline
- \multicolumn{2}{|l|}{Left a_{41}, a_{42}} & Center a_{43} & Right a_{44} \\
- \hline
- \end{tabular}
- \\ \\ \\
- \section{Arrays} \\
- \underline{\LARGE Arrays must be in math mode}
- \\
- $
- \begin{array}{ccc}
- a_{11} & a_{12} & a_{13} \\
- a_{21} & a_{22} & a_{23} \\
- \end{array}
- $
- \\ \\ \\
- $
- \begin{array}{c_cc}
- a_{11} & a_{12} & a_{13} \\
- \hline
- a_{21} & a_{22} & a_{23} \\
- \end{array}
- $
- \\ \\
- There are 2 ways for matrix creation: a) array with left parenthesis and b) pmatrix or bmatrix or vmatrix. \\ \\ \\
- \underline{{\LARGE a) With parenthesis}} \\ \\
- $
- \left(
- \begin{array}{cccc}
- a_{11} & a_{12} & a_{13} & a_{14} \\
- a_{21} & a_{22} & a_{23} & a_{24} \\
- a_{31} & a_{32} & a_{33} & a_{34} \\
- \end{array}
- \right)
- $
- \\ \\ \\
- \underline{{\LARGE b) With pmatrix}} \\ \\
- $
- \begin{pmatrix}
- a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
- a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
- a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
- \end{pmatrix}
- $
- \\ \\ \\ \\
- \underline{{\LARGE Matrices multiplication}} \\ \\
- $
- \begin{pmatrix}
- a_{11} & a_{12} & a_{13} & a_{14} \\
- a_{21} & a_{22} & a_{23} & a_{24} \\
- a_{31} & a_{32} & a_{33} & a_{34} \\
- \end{pmatrix}
- \cdot
- \begin{pmatrix}
- 1 & 0 & 0 & 0 \\
- 0 & 1 & 0 & 0 \\
- 0 & 0 & 1 & 0 \\
- 0 & 0 & 0 & 1 \\
- \end{pmatrix}
- =
- \begin{pmatrix}
- a_{11} & a_{12} & a_{13} & a_{14} \\
- a_{21} & a_{22} & a_{23} & a_{24} \\
- a_{31} & a_{32} & a_{33} & a_{34} \\
- \end{pmatrix}
- $
- \\ \\ \\
- \underline{{\LARGE Dots}} \\ \\
- $
- \begin{pmatrix}
- a_{11} & a_{12} & \cdots \\
- a_{21} & a_{22} & \cdots \\
- \vdots & \vdots & \ddots \\
- \end{pmatrix}
- $
- \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement