Advertisement
makispaiktis

Document 1 - Basics (1-4)

Sep 10th, 2021 (edited)
1,373
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 6.15 KB | None | 0 0
  1. \documentclass[14pt]{article}
  2. \usepackage[utf8]{inputenc}
  3. \usepackage{ulem}
  4. \usepackage{amsmath}
  5. \usepackage{amssymb}
  6. \usepackage{multirow}
  7.  
  8. \title{Document 1 - Basics}
  9. \author{Thomas Boufikos}
  10. \date{September 2021}
  11.  
  12.  
  13.  
  14. \begin{document}
  15.  
  16. \maketitle
  17. \section{Text Manipulation}
  18. Normal text size. \\
  19. {\LARGE Large text size.} \\
  20. {\LARGE This text contains only one {\LARGE LARGER} word (LARGE in LARGE).} \\
  21. Back to normal size \\
  22. \\
  23. \textbf{Bold only} \\
  24. \textit{Italic only} \\
  25. \underline{Underline only} \\
  26. \textbf{\textit{Bold and Italic}} \\
  27. \underline{\textit{Italic and Underline}} \\
  28. \textbf{\underline{Bold and Underline}} \\
  29. \uuline{Double underlined from ulem library} \\
  30. \uwave{Wavy underlined from ulem library} \\
  31. \\
  32. {\LARGE Left justification} \\
  33. \begin{flushleft}
  34. This is the 1st line. \\
  35. This is the 2nd line. \\
  36. This is the 3rd one. \\
  37. \end{flushleft}
  38. {\LARGE Centered} \\
  39. \begin{center}
  40. This is the 1st line. \\
  41. This is the 2nd line. \\
  42. This is the 3rd one. \\
  43. \end{center}
  44. {\LARGE Right justification} \\
  45. \begin{flushright}
  46. This is the 1st line. \\
  47. This is the 2nd line. \\
  48. This is the 3rd one. \\
  49. \end{flushright}
  50. \\ \\
  51. {\LARGE Paragraphs are created after a blank line} \\
  52.  
  53. First one with identation.
  54.  
  55. \noindent Second one without.
  56.  
  57. Third one with.
  58.  
  59. \noindent Fourth one without
  60.  
  61.  
  62.  
  63. \section{Math manipulation} \\
  64.  
  65. There are 2 ways for this: a) display mode and b) inline mode. \\ \\ \\
  66. \underline{{\LARGE a) Display math mode}} \\
  67. Notice that by substitution we have the following equation:
  68. \[
  69. f(x) = a_2x^2 + a_1x + a_0 \]
  70. \[  
  71.     = 4x^2 + 4x + 1
  72. \]
  73. By completing the squares, we have:
  74. \[
  75. f(x) = (2x+1)^2
  76. \]
  77. \\ \\
  78. \underline{{\LARGE Second way with align}} \\ \\
  79. Notice that by substitution we have the following equation: \\
  80. \begin{align}
  81.  f(x) & = a_2x^2 + a_1x + a_0 \\
  82.       & = 4x^2 + 4x + 1
  83. \end{align}
  84. \\ \\
  85. \underline{\LARGE Align* method with 3 equations (ams math)}}
  86. \\ \\
  87. \begin{align*}
  88.    2x + 1 & = 9  &  3y + 5 & = 11  &  4z - 6 & = 24 \\
  89.        2x & = 8  &      3y & = 6   &      4z & = 28 \\
  90.         x & = 4  &       y & = 2   &       z & = 7 \\
  91. \end{align*}
  92. \\ \\ \\ \\
  93. \underline{{\LARGE b) Inline math mode}} \\
  94.  
  95. Notice that by substitution we have the following equation: \( f(x) =  a_2x^2 + a_1x + a_0 = 4x^2 + 4x + 1 \). That means we can also complete the square by this way: $ f(x) = (2x+1)^2 $. These are the 2 solutions. \\
  96.  
  97. The area of a circle is:
  98. \[ E = \pi \cdot r^2\] \\
  99. where \( E \) is the area of the circle, \( \pi \) = 3.14159.... and $ r $ is the radius.
  100. \\ \\
  101. \underline{{\LARGE Math methods}} \\ \\
  102. We know that Euler proved that (display math mode):
  103. \[
  104. \sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}
  105. \]
  106. We know that (inline math mode): \( \sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6} \)
  107. \\ \\ \\
  108. \underline{{\LARGE Basic Arithmetic operations}} \\ \\
  109. 2 + 3 = 5 \\
  110. 4 - 1 = 3 \\
  111. 5 \cdot 4 = 20 \\
  112. 12 \times 4 = 48 \\
  113. 25 \div 5 = 5 \\
  114. 8 \cdot \frac{3}{4} = 6 \\
  115.  
  116. Here we are! We will make the following prove:
  117. \[
  118. f(x) = (a_1^{\frac{1}{b_1}} \cdot a_2^{\frac{1}{b_2}}) ^ {b_1b_2x} = (a_1^{b_2}a_2^{b_1})^x
  119. \]
  120. Nice done! Let's move on the next task.
  121. If $ a $ belongs to $\mathbb{R}$ and $   a > 1 $ , we have the following:
  122. \[
  123. \left( \sum_{n=0}^\infty \left( \frac{1}{a} \right) \right)^2 = \left( \sum_{n=0}^\infty \left( a^{-1} \right) \right)^2 = \left( \frac{1}{1-a^{-1}} \right)^2 = \frac{1}{1-2a+a^2}
  124. \]
  125. \\ \\ \\
  126. \section{Tables}
  127. \begin{tabular}{l|c|r}
  128.    \hline
  129.    1 & 2 & 3 \\
  130.    \hline
  131.     Element 1 & Room 2 & $a = 3$ \\
  132.     \hline
  133.     4 & 5 & 6 \\
  134.     \hline
  135.     5 \cdot 4 &  $ \mathbb{C} $ & $ \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$\\
  136.     \hline
  137.      
  138. \end{tabular}
  139. \\ \\ \\
  140. \begin{tabular}{|c|c||c|c|}
  141.    \hline
  142.    Distance(km) & Velocity(km/hr) & Time \\
  143.    \hline
  144.    10 & 5 & 2 hours = 120 minutes \\
  145.    \hline
  146.    20 & 80 & 0.25 hrs = 15 minutes \\
  147.    \hline
  148.    1 & 60 & $\frac{1}{60}$ hrs = 60 seconds \\
  149.    \hline
  150.      
  151. \end{tabular}
  152. \\ \\ \\
  153. \begin{tabular}{|c|c|c|}
  154.    \hline
  155.    X & & \\
  156.    \hline
  157.    O & X & \\
  158.    \hline
  159.    O & O & X \\
  160.    \hline
  161. \end{tabular}
  162. \\ \\ \\
  163. \begin{tabular}{|l|c|c|r|}
  164.     \hline
  165.     \multicolumn{3}{|r|}{Right 3 columns} & Right a_{14} \\
  166.     \hline
  167.     \multirow{2}{*}{Top 2} & Center a_{22} & Center a_{23} & Also Right a_{24} \\
  168.      & Center a_{32} & Center a_{33} & Also Right a_{34} \\
  169.     \hline
  170.     \multicolumn{2}{|l|}{Left a_{41}, a_{42}} & Center a_{43} & Right a_{44} \\
  171.     \hline
  172. \end{tabular}
  173. \\ \\ \\
  174. \section{Arrays} \\
  175. \underline{\LARGE Arrays must be in math mode}
  176. \\
  177.  
  178. $
  179. \begin{array}{ccc}
  180.     a_{11} & a_{12} & a_{13} \\  
  181.     a_{21} & a_{22} & a_{23} \\
  182. \end{array}
  183. $
  184. \\ \\ \\
  185. $
  186. \begin{array}{c_cc}
  187.     a_{11} & a_{12} & a_{13} \\
  188.     \hline
  189.     a_{21} & a_{22} & a_{23} \\
  190. \end{array}
  191. $
  192. \\ \\
  193.  
  194. There are 2 ways for matrix creation: a) array with left parenthesis and b) pmatrix or bmatrix or vmatrix. \\ \\ \\
  195. \underline{{\LARGE a) With parenthesis}} \\ \\
  196. $
  197. \left(
  198. \begin{array}{cccc}
  199.    a_{11} & a_{12} & a_{13} & a_{14} \\
  200.    a_{21} & a_{22} & a_{23} & a_{24} \\
  201.    a_{31} & a_{32} & a_{33} & a_{34} \\
  202. \end{array}
  203. \right)
  204. $
  205. \\ \\ \\
  206. \underline{{\LARGE b) With pmatrix}} \\ \\
  207. $
  208. \begin{pmatrix}
  209.    a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
  210.    a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
  211.    a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
  212. \end{pmatrix}
  213. $
  214. \\ \\ \\ \\
  215. \underline{{\LARGE Matrices multiplication}} \\ \\
  216. $
  217. \begin{pmatrix}
  218.    a_{11} & a_{12} & a_{13} & a_{14} \\
  219.    a_{21} & a_{22} & a_{23} & a_{24} \\
  220.    a_{31} & a_{32} & a_{33} & a_{34} \\
  221. \end{pmatrix}
  222. \cdot
  223. \begin{pmatrix}
  224.    1 & 0 & 0 & 0 \\
  225.    0 & 1 & 0 & 0 \\
  226.    0 & 0 & 1 & 0 \\
  227.    0 & 0 & 0 & 1 \\
  228. \end{pmatrix}
  229. =
  230. \begin{pmatrix}
  231.    a_{11} & a_{12} & a_{13} & a_{14} \\
  232.    a_{21} & a_{22} & a_{23} & a_{24} \\
  233.    a_{31} & a_{32} & a_{33} & a_{34} \\
  234. \end{pmatrix}
  235. $
  236. \\ \\ \\
  237. \underline{{\LARGE Dots}} \\ \\
  238. $
  239. \begin{pmatrix}
  240.    a_{11} & a_{12} & \cdots \\
  241.    a_{21} & a_{22} & \cdots \\
  242.    \vdots & \vdots & \ddots \\
  243. \end{pmatrix}
  244. $
  245.  
  246. \end{document}
  247.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement