Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- \documentclass{article}
- \usepackage[utf8]{inputenc}
- \usepackage{geometry} [a4paper,lmargin=1.5cm,rmargin=1.5cm,Botton=1.5cm,top=1.5cm]
- \usepackage{fancyhdr}
- \pagestyle{fancy}
- \usepackage{lastpage}
- \usepackage{graphicx}
- \usepackage{wrapfig}
- \usepackage{color}
- \usepackage{amsmath}
- \usepackage[T1]{fontenc}
- \usepackage{amsfonts}
- \usepackage{amssymb}
- \usepackage{mathrsfs}
- \usepackage{cancel}
- \usepackage[all]{xy}
- \usepackage{pstricks}
- \usepackage{pst-all}
- \usepackage{pst-solides3d}
- \usepackage{fancybox}
- \usepackage{tikz}
- \usepackage{tikz-3dplot}
- \usepackage{gnuplottex}
- \tikzset{flippedeventlabel/.append style={align=center}} \usetikzlibrary{matrix.skeleton} \usetikzlibrary[shapes,arrows,positioning,fit,backgrounds,intersections,shadows,calc,shadings]
- \usetikzlibrary{positioning}
- \usetikzlibrary{decorations.text} \usetikzlibrary{decorations.pathmorphing} \pgfdeclarelayer{background layer}
- \pgfdeclarelayer{foreground layer}
- \pgfsetlayers{background layer,main,foreground layer}
- \usepackage{color,colortbl}
- \usepackage{lscape}
- \usepackage{pgfplots}
- \pgfplotsset{compat=newest}
- \usetikzlibrary{datavisualization} \usetikzlibrary[shapes,arrows.meta,positioning,fit,backgrounds,intersections,shadows,calc,datavisualization.formats.functions] \usetikzlibrary{patterns} \usepackage[colorlinks=true,linkcolor=black,citecolor=black,filecolor=magenta,urlcolor=blue]{hyperref}
- \urlstyle{same}
- %Paquete de estilo de referencias
- \begin{document}
- \pagecolor{blue!55!green!90}
- \tikz
- {\draw (0,0) node[right,fill=black,text width=7.5cm,rounded corners=10pt]
- {
- \begin{flushright}
- \textcolor{white}{\textbf{Sobre Funciones Generalizadas En Física}}\\
- \textcolor{yellow}{Nimrod Rodríguez}\\
- \href{SITIO WEB}{\underline{\textcolor{red}{enlace:} \textcolor{green}{Código \LaTeX} }}
- \end{flushright}
- }}
- \renewcommand{\sin}{sen}
- \begin{tikzpicture}[scale =1,information text/.style={rounded corners=7pt, fill=blue,inner sep=2ex}]
- \draw (0,5)[xshift=2.3cm] node [left,text width=10cm, information text,scale=1.3]
- {\begin{minipage}{10cm}\bf\color{white}
- \begin{center}
- \shadowbox{Función Delta de Dirac}\\
- \end{center}
- En los primeros ejercicios del libro que se usaba como texto en un curso de Física, aparecían estos problemas de cálculo:\\
- Dada la siguiente definición:\\
- \tikz \draw (0,0) node[fill=black,text width=9cm]
- {
- \[
- \delta (x) =
- \left\{
- \begin{array}{rl}
- 0, & si\ x \neq 0\\
- \infty, & si\ x = 0\\
- \end{array}
- \hspace{0.3cm} con: \hspace{0.3cm} \displaystyle\int_{-\infty}^{+\infty} \!\!\delta (x)\ \mathrm{d}x = 1
- \right.
- \]
- };
- Evaluar las siguientes integrales:
- \tikz \draw (0,0) node[fill=black,text width=9cm]
- {
- \begin{itemize}
- \item $\displaystyle\int_{-3}^{+1} \!\!(x^3-3x^2+2x-1)\ \delta(x+2)\mathrm{d}x$
- \item $\displaystyle\int_{0}^{\infty} \!\![\cos(3x)+2]\ \delta(x-\pi)\mathrm{d}x$
- \item $\displaystyle\int_{-1}^{+1} \!\! e^{|x|+3} \ \delta(x-2)\mathrm{d}x$
- \end{itemize}
- };
- Hasta aquí todo iba bien, pero cuando se llegó al ejercicio:\\
- Demostrar que:\\
- \tikz \draw (0,0)
- node[fill=black,text width=9cm]
- {
- $$\delta (x)\ =\frac{1}{2\pi}\displaystyle\int_{-\infty}^{+\infty} \!\! e^{ikx} \ \mathrm{d}k$$
- };
- Aquí el asunto era ya de un análisis más cuidadoso.
- \end{minipage}};
- \end{tikzpicture}
- \begin{figure}[ht!]
- \centering
- \tikz \draw (0,0)
- node[fill=black,text width=12cm,inner sep=5ex,rounded corners]
- {
- \tdplotsetmaincoords{80}{110}
- \begin{tikzpicture}[scale=1.5,tdplot_main_coords,radius=0.5pt, information text/.style={rounded corners,color=white, fill=blue,inner sep=2ex}]
- \draw[red,thick,<->] (-1,0,0) -- (1,0,0) node[anchor=west]{ };
- \draw[orange,thick,<->] (0,-1,0) -- (0,1,0);
- \draw[yellow,thick,->] (0,0,0) -- (0,0,3) node[white,anchor=west]{$f_n(x)= \frac{1}{2\epsilon_n}, \ -\epsilon_n \leq x\leq \epsilon_n,\ $0 en otro caso};
- \draw (0,1.3,0)node[white]{\textbf{$\epsilon_n$}};
- \draw (0,-1.4,0)node[white]{\textbf{$-\ \epsilon_n$}};
- \foreach \a in {0.20,0.25,...,0.60}
- {
- \pgfmathparse{100*\a-10}
- \pgfmathsetmacro {\b}{1/(2*\a)};
- \pgfmathsetmacro {\c}{-1*\a};
- \draw[white] (0,\c,0)--(0,\c,\b)--(0,\a,\b)--(0,\a,0);
- }
- \draw [xshift=1.85cm] node [right,text width=4cm, information text,scale=0.75]
- {
- La figura muestra la sugerencia en la que se aproxima la funcion delta de Dirac, mediante funciones rectangulares normalizadas ($A_n=2\epsilon_n\ ×\frac{1}{2\epsilon_n} =1$), y asi lograr
- $\displaystyle\int_{-\infty}^{+\infty} \!\!\delta (x)\ \mathrm{d}x = 1$
- };
- \end{tikzpicture}
- };
- \end{figure}
- \end{document}
Add Comment
Please, Sign In to add comment