nm9505

Funcion Delta De Dirac

Apr 16th, 2023 (edited)
202
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 4.49 KB | Science | 0 0
  1. \documentclass{article}
  2. \usepackage[utf8]{inputenc}
  3. \usepackage{geometry} [a4paper,lmargin=1.5cm,rmargin=1.5cm,Botton=1.5cm,top=1.5cm]
  4. \usepackage{fancyhdr}
  5. \pagestyle{fancy}
  6. \usepackage{lastpage}
  7. \usepackage{graphicx}
  8. \usepackage{wrapfig}
  9. \usepackage{color}
  10. \usepackage{amsmath}
  11. \usepackage[T1]{fontenc}
  12. \usepackage{amsfonts}
  13. \usepackage{amssymb}
  14. \usepackage{mathrsfs}
  15. \usepackage{cancel}
  16. \usepackage[all]{xy}
  17. \usepackage{pstricks}
  18. \usepackage{pst-all}
  19. \usepackage{pst-solides3d}
  20. \usepackage{fancybox}
  21. \usepackage{tikz}
  22. \usepackage{tikz-3dplot}
  23. \usepackage{gnuplottex}
  24. \tikzset{flippedeventlabel/.append style={align=center}} \usetikzlibrary{matrix.skeleton} \usetikzlibrary[shapes,arrows,positioning,fit,backgrounds,intersections,shadows,calc,shadings]
  25. \usetikzlibrary{positioning}
  26. \usetikzlibrary{decorations.text} \usetikzlibrary{decorations.pathmorphing} \pgfdeclarelayer{background layer}
  27. \pgfdeclarelayer{foreground layer}
  28. \pgfsetlayers{background layer,main,foreground layer}
  29. \usepackage{color,colortbl}
  30. \usepackage{lscape}
  31. \usepackage{pgfplots}
  32. \pgfplotsset{compat=newest}
  33. \usetikzlibrary{datavisualization} \usetikzlibrary[shapes,arrows.meta,positioning,fit,backgrounds,intersections,shadows,calc,datavisualization.formats.functions] \usetikzlibrary{patterns} \usepackage[colorlinks=true,linkcolor=black,citecolor=black,filecolor=magenta,urlcolor=blue]{hyperref}
  34. \urlstyle{same}  
  35. %Paquete de estilo de referencias
  36. \begin{document}
  37. \pagecolor{blue!55!green!90}
  38. \tikz
  39. {\draw (0,0) node[right,fill=black,text width=7.5cm,rounded corners=10pt]
  40. {
  41. \begin{flushright}
  42. \textcolor{white}{\textbf{Sobre Funciones Generalizadas En Física}}\\
  43. \textcolor{yellow}{Nimrod Rodríguez}\\
  44. \href{SITIO WEB}{\underline{\textcolor{red}{enlace:} \textcolor{green}{Código \LaTeX} }}
  45. \end{flushright}
  46. }}
  47.  
  48. \renewcommand{\sin}{sen}
  49. \begin{tikzpicture}[scale =1,information text/.style={rounded corners=7pt, fill=blue,inner sep=2ex}]
  50. \draw (0,5)[xshift=2.3cm]  node  [left,text width=10cm, information text,scale=1.3]
  51. {\begin{minipage}{10cm}\bf\color{white}
  52. \begin{center}
  53. \shadowbox{Función Delta de Dirac}\\
  54. \end{center}
  55. En los primeros ejercicios del libro que se usaba como texto en un curso de Física, aparecían estos problemas de cálculo:\\
  56. Dada la siguiente definición:\\
  57. \tikz \draw (0,0) node[fill=black,text width=9cm]
  58. {
  59. \[
  60. \delta (x) =
  61. \left\{
  62. \begin{array}{rl}
  63. 0, & si\  x \neq 0\\
  64. \infty, & si\  x = 0\\
  65. \end{array}
  66. \hspace{0.3cm} con: \hspace{0.3cm} \displaystyle\int_{-\infty}^{+\infty} \!\!\delta (x)\ \mathrm{d}x = 1
  67. \right.
  68. \]
  69. };
  70. Evaluar las siguientes integrales:
  71. \tikz \draw (0,0) node[fill=black,text width=9cm]
  72. {
  73. \begin{itemize}
  74. \item $\displaystyle\int_{-3}^{+1} \!\!(x^3-3x^2+2x-1)\ \delta(x+2)\mathrm{d}x$
  75. \item $\displaystyle\int_{0}^{\infty} \!\![\cos(3x)+2]\ \delta(x-\pi)\mathrm{d}x$
  76. \item $\displaystyle\int_{-1}^{+1} \!\! e^{|x|+3} \ \delta(x-2)\mathrm{d}x$
  77. \end{itemize}
  78. };
  79. Hasta aquí todo iba bien, pero cuando se llegó al ejercicio:\\
  80. Demostrar que:\\
  81. \tikz \draw (0,0)
  82. node[fill=black,text width=9cm]
  83. {
  84. $$\delta (x)\ =\frac{1}{2\pi}\displaystyle\int_{-\infty}^{+\infty} \!\! e^{ikx} \ \mathrm{d}k$$
  85. };
  86. Aquí el asunto era ya de un análisis más cuidadoso.
  87. \end{minipage}};
  88. \end{tikzpicture}
  89. \begin{figure}[ht!]
  90. \centering
  91. \tikz \draw (0,0)
  92. node[fill=black,text width=12cm,inner sep=5ex,rounded corners]
  93. {
  94. \tdplotsetmaincoords{80}{110}
  95. \begin{tikzpicture}[scale=1.5,tdplot_main_coords,radius=0.5pt, information text/.style={rounded corners,color=white, fill=blue,inner sep=2ex}]
  96. \draw[red,thick,<->] (-1,0,0) -- (1,0,0) node[anchor=west]{ };
  97. \draw[orange,thick,<->] (0,-1,0) -- (0,1,0);
  98. \draw[yellow,thick,->] (0,0,0) -- (0,0,3) node[white,anchor=west]{$f_n(x)= \frac{1}{2\epsilon_n}, \ -\epsilon_n \leq x\leq \epsilon_n,\ $0 en otro caso};
  99. \draw (0,1.3,0)node[white]{\textbf{$\epsilon_n$}};
  100. \draw (0,-1.4,0)node[white]{\textbf{$-\ \epsilon_n$}};
  101. \foreach \a in {0.20,0.25,...,0.60}
  102. {
  103. \pgfmathparse{100*\a-10}
  104. \pgfmathsetmacro {\b}{1/(2*\a)};
  105. \pgfmathsetmacro {\c}{-1*\a};
  106. \draw[white] (0,\c,0)--(0,\c,\b)--(0,\a,\b)--(0,\a,0);
  107. }
  108. \draw [xshift=1.85cm] node [right,text width=4cm, information text,scale=0.75]
  109. {
  110. La figura muestra la sugerencia en la que se aproxima la funcion delta de Dirac, mediante funciones rectangulares normalizadas ($A_n=2\epsilon_n\ ×\frac{1}{2\epsilon_n} =1$), y asi lograr
  111. $\displaystyle\int_{-\infty}^{+\infty} \!\!\delta (x)\ \mathrm{d}x = 1$
  112. };
  113. \end{tikzpicture}
  114. };
  115. \end{figure}
  116. \end{document}
  117.  
Add Comment
Please, Sign In to add comment