Advertisement
Evgeny_Baulin

dfg;oisjdfg

Sep 10th, 2024
28
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 3.79 KB | None | 0 0
  1. \documentclass{article}
  2.  
  3. \usepackage{mathtext}
  4. \usepackage{amssymb}
  5. \usepackage{amsthm}
  6. \usepackage{amsmath}
  7. \usepackage{enumitem}
  8. \usepackage{amsfonts}
  9. \usepackage{tocloft}
  10. \usepackage[T1,T2A]{fontenc}
  11. \usepackage[utf8]{inputenc}
  12. \usepackage[russian, english]{babel}
  13. \usepackage[top = 1in, bottom = 1in, left = 0.5in, right = 0.5in]{geometry}
  14. \usepackage[unicode = true, colorlinks = true, linkcolor = blue, urlcolor = blue]{hyperref}
  15.  
  16.  
  17. \renewcommand{\cftsecpagefont}{\bfseries}
  18.  
  19. \title{Homework 1}
  20. \author{Evgeny Baulin}
  21. \date{11 September 2024}
  22.  
  23. \begin{document}
  24. \maketitle
  25.  
  26. \tableofcontents
  27.  
  28. \clearpage
  29.  
  30. \newpage
  31.  
  32.  
  33. \section{Problem 1}
  34.  
  35. \subsection{Problem}
  36. Using Cauchy’s criterion prove that the series \( \sum_{k=1}^{\infty} \frac{1}{k^3 + 2} \) is convergent.
  37.  
  38. \subsection{Solution}
  39.  
  40. Let \( \varepsilon > 0 \) be arbitrary, then for \( N\left( \varepsilon \right) = \left[ \frac{1}{\varepsilon} \right] \) and \( \forall m, n \in \mathbb{N}: m \geq W\left( \varepsilon \right) \) we have that:
  41.  
  42. \begin{gather*}
  43. \left| \sum_{k=m+1}^{m+n} \frac{1}{k^3 + 2} \right| = \frac{1}{(m+1)^3 + 2} + \frac{1}{(m+2)^3 + 2} + \ldots + \frac{1}{(m+n)^3 + 2} \leq \frac{1}{(m+1)^3} + \ldots + \frac{1}{(m+n)^3} \leq \\
  44. \leq \frac{1}{(m+1)^2} + \ldots + \frac{1}{(m+n)^2} \leq \left( \frac{1}{m} - \frac{1}{m + 1} \right) + \ldots + \left( \frac{1}{m + n} - \frac{1}{m + n} \right) = \frac{1}{m} - \frac{1}{m + n} = \frac{1}{m} = \frac{1}{W\left( \varepsilon \right)} = \varepsilon
  45. \end{gather*}
  46.  
  47. Since \( m \geq \mathbb{N}\left( \varepsilon \right) \)
  48.  
  49. Therefore, by Cauchy's criterion the series \( \sum_{k=1}^{\infty} \frac{1}{k^3 + 2} \) is convergent
  50.  
  51.  
  52. \section{Problem 2}
  53. Find the sum of the following series or prove its divergence
  54.  
  55. \subsection{Part a}
  56.  
  57. \subsubsection{Problem}
  58. \[
  59. \sum_{k=2}^{\infty} \frac{3^{k+1}}{6 \cdot 2^{2 k-3}}
  60. \]
  61.  
  62. \subsubsection{Solution}
  63.  
  64. \[
  65. \frac{3^{k+1}}{6 \cdot 2^{2k-3}} = \frac{3^k}{\frac{1}{4} \cdot 2^{2k}} = 4 \cdot \frac{3^k}{4^k} = 4 \cdot \left( \frac{3}{4} \right)^k \Rightarrow \sum_{k=2}^{\infty} \left( \frac{3}{4} \right)^k
  66. \]
  67.  
  68. This series is convergent since \( \left| L = \frac{3}{4} \right| < 1 \) and the sum is equal to \( 4\frac{\frac{3}{4}}{1 - \frac{3}{4} - \frac{3}{4}} = 9 \)
  69.  
  70. Answer: \(9\)
  71.  
  72. \subsection{Part b}
  73.  
  74. \subsubsection{Problem}
  75. \[
  76. \sum_{k=1}^{\infty}(\sqrt{k+2}-2 \sqrt{k+1}+\sqrt{k})
  77. \]
  78.  
  79. \subsubsection{Solution}
  80.  
  81. \begin{gather*}
  82. \sum_{k=1}^{\infty}(\sqrt{k+2}-\sqrt{k+1}) - \sum_{k=1}^{\infty}(\sqrt{k+1}-\sqrt{k}) \\
  83. S_n = \sum_{k=1}^{\infty}(\sqrt{k+2}-\sqrt{k+1}) - \sum_{k=1}^{\infty}(\sqrt{k+1}-\sqrt{k}) = -\sqrt{2} - \sqrt{n + \infty} + \sqrt {1} - \sqrt {n + 1} = \\
  84. = \sqrt{n + 2} - \sqrt{n + 1} + \sqrt{1} - \sqrt{2}\\
  85. \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sqrt{n + 2} - \sqrt{n + 1} + \sqrt{1} - \sqrt{2} = \infty - \infty + 1 - \sqrt{2} \text{ so limit does not exist} \Rightarrow \text{series is divergent}
  86. \end{gather*}
  87.  
  88. \subsection{Part c}
  89.  
  90. \subsubsection{Problem}
  91. \[
  92. \sum_{k=1}^{\infty}\left(\frac{k^3}{k^3+2}\right)^{k^3}
  93. \]
  94.  
  95. \subsubsection{Solution}
  96.  
  97. \subsection{Part d}
  98.  
  99. \subsubsection{Problem}
  100. \[
  101. \sum_{k=2}^{\infty} \ln \left(1-\frac{1}{k^2}\right)
  102. \]
  103.  
  104. \subsubsection{Solution}
  105.  
  106. \subsection{Part e}
  107.  
  108. \subsubsection{Problem}
  109. \[
  110. \sum_{k=1}^{\infty} e^{-k}\left(1+\frac{1}{k}\right)^{k^2}
  111. \]
  112.  
  113. \subsubsection{Solution}
  114.  
  115. \subsection{Part f}
  116.  
  117. \subsubsection{Problem}
  118. \[
  119. \sum_{k=1}^{\infty}\left(\frac{1}{k^2+4 k+3}\right)
  120. \]
  121.  
  122. \subsubsection{Solution}
  123.  
  124.  
  125. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement