Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- \documentclass{article}
- \usepackage{mathtext}
- \usepackage{amssymb}
- \usepackage{amsthm}
- \usepackage{amsmath}
- \usepackage{enumitem}
- \usepackage{amsfonts}
- \usepackage{tocloft}
- \usepackage[T1,T2A]{fontenc}
- \usepackage[utf8]{inputenc}
- \usepackage[russian, english]{babel}
- \usepackage[top = 1in, bottom = 1in, left = 0.5in, right = 0.5in]{geometry}
- \usepackage[unicode = true, colorlinks = true, linkcolor = blue, urlcolor = blue]{hyperref}
- \renewcommand{\cftsecpagefont}{\bfseries}
- \title{Homework 1}
- \author{Evgeny Baulin}
- \date{11 September 2024}
- \begin{document}
- \maketitle
- \tableofcontents
- \clearpage
- \newpage
- \section{Problem 1}
- \subsection{Problem}
- Using Cauchy’s criterion prove that the series \( \sum_{k=1}^{\infty} \frac{1}{k^3 + 2} \) is convergent.
- \subsection{Solution}
- Let \( \varepsilon > 0 \) be arbitrary, then for \( N\left( \varepsilon \right) = \left[ \frac{1}{\varepsilon} \right] \) and \( \forall m, n \in \mathbb{N}: m \geq W\left( \varepsilon \right) \) we have that:
- \begin{gather*}
- \left| \sum_{k=m+1}^{m+n} \frac{1}{k^3 + 2} \right| = \frac{1}{(m+1)^3 + 2} + \frac{1}{(m+2)^3 + 2} + \ldots + \frac{1}{(m+n)^3 + 2} \leq \frac{1}{(m+1)^3} + \ldots + \frac{1}{(m+n)^3} \leq \\
- \leq \frac{1}{(m+1)^2} + \ldots + \frac{1}{(m+n)^2} \leq \left( \frac{1}{m} - \frac{1}{m + 1} \right) + \ldots + \left( \frac{1}{m + n} - \frac{1}{m + n} \right) = \frac{1}{m} - \frac{1}{m + n} = \frac{1}{m} = \frac{1}{W\left( \varepsilon \right)} = \varepsilon
- \end{gather*}
- Since \( m \geq \mathbb{N}\left( \varepsilon \right) \)
- Therefore, by Cauchy's criterion the series \( \sum_{k=1}^{\infty} \frac{1}{k^3 + 2} \) is convergent
- \section{Problem 2}
- Find the sum of the following series or prove its divergence
- \subsection{Part a}
- \subsubsection{Problem}
- \[
- \sum_{k=2}^{\infty} \frac{3^{k+1}}{6 \cdot 2^{2 k-3}}
- \]
- \subsubsection{Solution}
- \[
- \frac{3^{k+1}}{6 \cdot 2^{2k-3}} = \frac{3^k}{\frac{1}{4} \cdot 2^{2k}} = 4 \cdot \frac{3^k}{4^k} = 4 \cdot \left( \frac{3}{4} \right)^k \Rightarrow \sum_{k=2}^{\infty} \left( \frac{3}{4} \right)^k
- \]
- This series is convergent since \( \left| L = \frac{3}{4} \right| < 1 \) and the sum is equal to \( 4\frac{\frac{3}{4}}{1 - \frac{3}{4} - \frac{3}{4}} = 9 \)
- Answer: \(9\)
- \subsection{Part b}
- \subsubsection{Problem}
- \[
- \sum_{k=1}^{\infty}(\sqrt{k+2}-2 \sqrt{k+1}+\sqrt{k})
- \]
- \subsubsection{Solution}
- \begin{gather*}
- \sum_{k=1}^{\infty}(\sqrt{k+2}-\sqrt{k+1}) - \sum_{k=1}^{\infty}(\sqrt{k+1}-\sqrt{k}) \\
- S_n = \sum_{k=1}^{\infty}(\sqrt{k+2}-\sqrt{k+1}) - \sum_{k=1}^{\infty}(\sqrt{k+1}-\sqrt{k}) = -\sqrt{2} - \sqrt{n + \infty} + \sqrt {1} - \sqrt {n + 1} = \\
- = \sqrt{n + 2} - \sqrt{n + 1} + \sqrt{1} - \sqrt{2}\\
- \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sqrt{n + 2} - \sqrt{n + 1} + \sqrt{1} - \sqrt{2} = \infty - \infty + 1 - \sqrt{2} \text{ so limit does not exist} \Rightarrow \text{series is divergent}
- \end{gather*}
- \subsection{Part c}
- \subsubsection{Problem}
- \[
- \sum_{k=1}^{\infty}\left(\frac{k^3}{k^3+2}\right)^{k^3}
- \]
- \subsubsection{Solution}
- \subsection{Part d}
- \subsubsection{Problem}
- \[
- \sum_{k=2}^{\infty} \ln \left(1-\frac{1}{k^2}\right)
- \]
- \subsubsection{Solution}
- \subsection{Part e}
- \subsubsection{Problem}
- \[
- \sum_{k=1}^{\infty} e^{-k}\left(1+\frac{1}{k}\right)^{k^2}
- \]
- \subsubsection{Solution}
- \subsection{Part f}
- \subsubsection{Problem}
- \[
- \sum_{k=1}^{\infty}\left(\frac{1}{k^2+4 k+3}\right)
- \]
- \subsubsection{Solution}
- \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement