Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import os
- from itertools import groupby
- import pandas as pd
- import kagglehub
- import numpy as np
- path = kagglehub.dataset_download("ersany/online-retail-dataset")
- df = pd.read_excel(os.path.join(path, "Online Retail.xlsx"))
- def double_price(group_data):
- group = group_data.copy()
- group['UnitPrice'] = group['UnitPrice'] * 2
- group['Country'] = group['Country'] + '_bad_times'
- return group
- def decrease_price(group_data):
- group = group_data.copy()
- price_mean = group['UnitPrice'].mean()
- price_min = group['UnitPrice'].min()
- group['UnitPrice'] = np.maximum(price_min, group['UnitPrice'] - 0.15 * price_mean)
- group['Country'] = group['Country'] + '_great_times'
- return group
- def change_price(group):
- double = double_price(group)
- decrease = decrease_price(group)
- group = pd.concat([double, decrease], axis=0, ignore_index=True)
- return group
- def task2(df):
- df = df.groupby(df['Country'], group_keys=False).apply(change_price)
- return df
- df = task2(df)
- print(df.head())
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement