Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import numpy as np
- from cell import cell
- def alignment_nw(a,b):
- if a==b:
- return 3
- else:
- return -3
- def recursion(paths,D):
- new_paths = []
- returnvalue = paths
- keep_going = False
- for path in paths:
- if path[-1].get_value() == 0:
- continue
- pointers = path[-1].get_pointers()
- for pointer in pointers:
- if pointers.size==0:
- continue
- indices = np.where(D == pointer)
- path = np.append(path,D[indices])
- keep_going = True
- if len(new_paths) == 0:
- new_paths = [path]
- else:
- new_paths.append(path)
- if keep_going:
- returnvalue=recursion(new_paths,D)
- return returnvalue
- def main(A,B):
- A = np.array([ a for a in A ])
- B = np.array([ b for b in B ])
- A = np.insert(A,0,'-')
- B = np.insert(B,0,'-')
- D = np.array([[cell() for i in range(B.size)] for j in range(A.size)])
- for i in range(1,A.size):
- D[i][0].set_value(0)
- for i in range(1,B.size):
- D[0][i].set_value(0)
- for i in range(1,A.size):
- for j in range(1,B.size):
- D[i][j].set_value(0)
- candidates = [D[i-1][j-1].get_value()+alignment_nw(A[i],B[j]), D[i-1][j].get_value()-2,D[i][j-1].get_value()-2]
- index_array = np.argwhere(candidates == np.amax(candidates)).flatten().tolist()
- if candidates[index_array[-1]]>0:
- D[i][j].set_value(candidates[index_array[-1]])
- for k in index_array:
- if k == 0:
- D[i][j].add_pointer(D[i-1][j-1])
- elif k == 1:
- D[i][j].add_pointer(D[i-1][j])
- elif k == 2:
- D[i][j].add_pointer(D[i][j-1])
- print(D)
- #Tracing arrows back
- path = [[np.amax(D)]]
- paths = recursion(path,D)
- print(paths)
- previous_step_indices = np.array([-1,-1])
- alignment = ['','']
- score = 0
- for id,path in enumerate(paths):
- for step in path:
- indices = np.where(D == step)
- if(previous_step_indices[0]==-1):
- previous_step_indices=indices
- continue
- elif indices[0]<previous_step_indices[0] and indices[1]<previous_step_indices[1]:
- alignment = [A[previous_step_indices[0][-1]]+alignment[0],B[previous_step_indices[1][-1]]+alignment[1]]
- if A[previous_step_indices[0][-1]]==B[previous_step_indices[1][-1]]:
- score=score+1
- else:
- score=score-1
- elif indices[0]<previous_step_indices[0]:
- alignment = [A[previous_step_indices[0][-1]]+alignment[0],'-'+alignment[1]]
- score=score-1
- elif indices[1]<previous_step_indices[1]:
- alignment = ['-'+alignment[0],B[previous_step_indices[1][-1]]+alignment[1]]# np.char.add(['-',B[indices[1]]],alignment)#('-'+alignment[0],B[indices[1]]+alignment[1])
- score=score-1
- previous_step_indices=indices
- print('\npath number: {} score: {}\n{}\n{}\n'.format(id+1,score,alignment[0],alignment[1]))
- alignment = ['','']
- score=0
- return
- main('ACGTC','AGTCA')
- #main('GCATGCU','GATTACA')
- #main('GGTTGACTA','TGTTACGG')
- ###################BACKUP#######################
- #def main(A,B):
- # A = np.array([ a for a in A ])
- # B = np.array([ b for b in B ])
- # A = np.insert(A,0,'-')
- # B = np.insert(B,0,'-')
- # cell = np.dtype([('symbol', np.unicode_, 3), ('value', np.int32)])
- # D = np.zeros((A.size,B.size),dtype=cell)#([('H', 1), ('V', 0)], dtype=cell)
- # for i in range(1,A.size):
- # D[i][0]=('',-i)
- # for i in range(1,B.size):
- # D[0][i]=('',-i)
- # for i in range(1,A.size):
- # for j in range(1,B.size):
- # candidates = [D[i-1][j-1]['value']+alignment_nw(A[i],B[j]), D[i-1][j]['value']-1,D[i][j-1]['value']-1]
- # #print('intex i: {}, j: {}, candidates: {}'.format(i,j,candidates))
- # index_array = np.argwhere(candidates == np.amax(candidates)).flatten().tolist()
- # print(index_array)
- # D[i][j]['value']=candidates[index_array[-1]]
- # for k in index_array:
- # if k == 0:
- # D[i][j]['symbol']+="\\"
- # elif k == 1:
- # D[i][j]['symbol']+='^'
- # elif k == 2:
- # D[i][j]['symbol']+='<'
- # #print(index_array)
- # #print('A[i-1]: {},B[j-1]: {},B[j]: {})'.format(A[i-1],B[j-1],B[j]))
- # print(D)
- # #Tracing arrows back
- # print(D[3][4]['symbol'])
- # return
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement