Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import pandas as pd
- from sklearn import linear_model
- Stock_Market = {
- 'Year': [2017,2017,2017,2017,2017,2017,2017,2017,2017,2017,2017,2017,2016,2016,2016,2016,2016,2016,
- 2016,2016,2016,2016,2016,2016],
- 'Month': [12, 11,10,9,8,7,6,5,4,3,2,1,12,11,10,9,8,7,6,5,4,3,2,1],
- 'Interest Rate': [2.75,2.5,2.5,2.5,2.5,2.5,2.5,2.25,2.25,2.25,2,2,2,1.75,1.75,1.75,1.75,1.75,1.75,1.75,1.75,1.75,1.75,1.75],
- 'Unemployment Rate': [5.3,5.3,5.3,5.3,5.4,5.6,5.5,5.5,5.5,5.6,5.7,5.9,6,5.9,5.8,6.1,6.2,6.1,6.1,6.1,5.9,6.2,6.2,6.1],
- 'Stock Index Price': [1464,1394,1357,1293,1256,1254,1234,1195,1159,1167,1130,1075,1047,965,943,958,971,949,
- 884,866,876,822,704,719]
- }
- def calcular_regresion_lineal_multiple(datos):
- market = pd.DataFrame(datos, columns=['Year', 'Month', 'Interest Rate', 'Unemployment Rate', 'Stock Index Price'])
- X = market[['Interest Rate', 'Unemployment Rate']]
- Y = market['Stock Index Price']
- regresion = linear_model.LinearRegression()
- regresion.fit(X, Y)
- print("Intercepto: {} / Coeficientes {}".format(regresion.intercept_, regresion.coef_))
- calcular_regresion_lineal_multiple(Stock_Market)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement