Advertisement
mayankjoin3

algos security

Jun 30th, 2023
104
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 9.15 KB | None | 0 0
  1. 1-Class SVM
  2. 1-SVM
  3. 7-NN
  4. 9 International Journal of Pure
  5. a deep neural network
  6. a deep neural network (DNN) model.
  7. a DL approach
  8. a one-layer CNN models
  9. A White-Box Attack against MLP
  10. AAE
  11. Accuracy
  12. ADA boost
  13. ADABoost
  14. ADABOOST ALGORITHM
  15. Adaboost with Decision Tree
  16. AdaboostM1
  17. AE
  18. AIS
  19. algorithm
  20. ALGORITHM 1: training procedures of SAE.
  21. ALGORITHM 2: CART creation process
  22. ALGORITHM 3: tree generation process.
  23. AMAEID
  24. an AutoEncoder model
  25. an RNN with LSTM model
  26. analysis of using Machine Learning Techniques for Intrusion Detection
  27. ANN
  28. Ant colony algorithm
  29. AntMiner strategy
  30. Apache Storm using SVM
  31. Applied Mathematics Special Issue 109 PCA
  32. artificial neural network
  33. artificial neural network (ANN)
  34. Artificial Neural Network (MLP)
  35. Association rule mining
  36. Association rules
  37. Auto Encoder (AE)
  38. Autoencoder
  39. AUTO-ENCODER
  40. Autoencoder neural network
  41. Autoencoders
  42. Autoenoders
  43. backpropagation neural network (BPNN)
  44. Bagging
  45. Bayes Net
  46. Bayes Network
  47. Bayes tree models
  48. Bayesian Classification
  49. Bayesian Network
  50. Bayesian network s
  51. Bayesian Networks
  52. BayesNet
  53. Bays Net
  54. BestFirst
  55. BGSA-SVM
  56. bidirectional long short-term memory with attention
  57. BiGAN
  58. BiLSTM
  59. Bi-LSTM
  60. BIRCH Hierarchical Clustering Algorithm
  61. BLoCNet
  62. BLSTM
  63. BN
  64. BOOSTING
  65. BP
  66. BPNN
  67. BT
  68. BYES NET
  69. C4.5
  70. C4.5 decision tree
  71. C5 decision tree
  72. C5.0
  73. CANN
  74. CART
  75. CART-BN
  76. CASMN
  77. Cat boost
  78. CatBoost
  79. Centralized Blending
  80. CF Tree
  81. Chi-Logistic Regression classifer.
  82. Chi-SVM classifer
  83. Classification
  84. Clustering
  85. Clustering algorithm i.e. Artificial Immune Network
  86. Clustering techniques
  87. CNN
  88. CNN((Binary classification
  89. CNN-BiLSTM
  90. CNN-GRU
  91. CNN-LSTM
  92. CNN-RNN
  93. Common Path Mining
  94. Comparative Analysis : different methods
  95. Convolutional networks
  96. Convolutional Neural Network (CNN)
  97. Convolutional neural networks
  98. Convolutional Neural Networks (CNN)
  99. Correlation feature selection
  100. CW Attacks against GAN
  101. DA
  102. DATA mining Algorithms
  103. DBN
  104. DBSCAN
  105. DCNNBiLSTM
  106. Decision forest
  107. decision jungle (DJ)
  108. Decision Stump
  109. Decision table
  110. Decision Tree
  111. Decision Tree (CART)
  112. Decision Tree (DT)
  113. Decision Tree (J48)
  114. DECISION TREE ALGORITHM
  115. Decision Tree as
  116. decision tree based
  117. decision tree.
  118. Decision Trees
  119. deep autoencoders
  120. Deep Belief Network (DBN)
  121. deep belief networks
  122. deep Boltzmann machines
  123. Deep CNN-BiLSTM Model
  124. Deep Feed Forward (DFF)
  125. deep feedforward neural network (DFNN)
  126. Deep Learning (DL)
  127. Deep networks
  128. Deep Neural Network
  129. Deep Neural Network (DNN)
  130. Deep neural networks
  131. Deep SARSA
  132. Detection rate
  133. DFF
  134. DIGFuPAS
  135. Discriminative Multinomial Naïve Bayes
  136. DL
  137. DL (Restricted Boltzmann Machine (RBM))
  138. DML
  139. DNN
  140. DNN (Also Attack comparison of diff algo with the DNN proposed)
  141. DNN Model.
  142. DO-IDS
  143. DP clustering
  144. DRL training algorithm
  145. DT
  146. DT)
  147. DTKNN
  148. DTNB
  149. e k-nearest neighbor (k-NN) algorithm
  150. ELM
  151. ELM based on modified K-means
  152. EM
  153. END (Ensembles of Balanced Nested Dichotomies for Multi-class Problems) . Grading
  154. Enhanced Adaboost
  155. Ensemble
  156. Ensemble approach with WMV
  157. Ensemble feature selection with information gain
  158. ENSEMBLE LEARNING
  159. Ensemble models
  160. Extended RBFNN Within a Supervised Learning Framework
  161. Extended RBFNN Within an Offline Reinforcement Learning Framework
  162. Extra Tree
  163. Extreme Gradient Boosting
  164. Extreme Gradient Boosting (XGBoost)
  165. Extreme Learning Machine (ELM)
  166. False alarm
  167. FC-ANN
  168. Feature Selection (PCA)
  169. federated deep learning
  170. Federated learning
  171. feed-forward
  172. FFDNN
  173. FFO-PNN
  174. FGSM
  175. FL-CNN
  176. FP-ANK
  177. Fuzzy
  178. fuzzy clustering
  179. fuzzy controller
  180. Fuzzy Logic
  181. Fuzzy Logics
  182. Fuzzy rule-based modeling
  183. GA
  184. Gain Ratio Feature Evaluator) are applied to implement the NIDS models
  185. GALR-DT
  186. GAN
  187. GAN-DNN
  188. GASSIST-ADI
  189. Gaussian Naive Bayes
  190. GB
  191. GBBK Algorithm
  192. GBDT
  193. GD-ANN
  194. Generative models
  195. Genetic Algorithm
  196. Genetic Network Programming
  197. GeneticSearch
  198. GE-SVM
  199. GNB
  200. gradboost
  201. Gradient Boost
  202. Gradient Boosted Decision trees
  203. Gradient Boosting
  204. GRU
  205. GRU-RNN
  206. GS-ANN
  207. GSPSO-ANN
  208. GV-SVM
  209. HC-DTTWSVM
  210. HFS-LGBM
  211. Hidden Naive Bayes
  212. Hidden Naïve Bayes (HNB)
  213. Hierarchical Clustering
  214. HMM
  215. Hoeffding
  216. Hybrid SVM ELM
  217. Hyperpipes
  218. IBK
  219. IBK algorithm
  220. ICE
  221. IDS
  222. IDSGAN
  223. IF
  224. IG
  225. IGR
  226. IGRF-RFE
  227. Inception
  228. Inception transfer learning
  229. Instance based learning
  230. Isolation forest
  231. Isolation Forest (iForest)
  232. J.48
  233. J4.8
  234. J48
  235. J-48
  236. J48(C4.5)
  237. JRIP
  238. k Nearest Neighbor (KNN)
  239. K NEAREST NEIGHBOR ALGORITHM
  240. KA
  241. Keras Deep Learning models
  242. K-M
  243. KMC
  244. K-Mean
  245. K-Means
  246. K-Means Clustering
  247. K-means Clustering algorithm
  248. K-Medoids
  249. KMSVM
  250. KN neighbor
  251. K-Nearest Neighbor
  252. k-nearest neighbor (KNN)
  253. k-nearest neighbor (k-NN) algorithm
  254. k-nearest neighbors
  255. K-Nearest Neighbors (KNN)
  256. k-Nearest Neighbour (k-NN)
  257. k-nearest neighbour classification
  258. k-Nearest-Neighbors (KNN)
  259. kNN
  260. k-NN
  261. KNN
  262. K-NN
  263. KNN Neighbors
  264. KPCA-GA-SVM
  265. KSVM
  266. LCC-MI-SVM-FS
  267. LDA
  268. LGBM
  269. Library for Support Vector Machine (LIBSVM)
  270. Light Gradient Boosting Machine (LightGBM)
  271. LightGBM
  272. Linear
  273. Linear Discriminant Analysis (LDA)
  274. Linear Regression (LR)
  275. linear support vector
  276. LinearSVC
  277. LMDRT-SVM
  278. LMDRT-SVM2
  279. LMT
  280. Local Outlier Factor (LOF)
  281. Logistic
  282. Logistic Model Trees (LMT)
  283. LOGISTIC REGRESSION
  284. Logistic Regression (LR)
  285. Long Short-Term Memory (LSTM)
  286. LR
  287. L-SCAN
  288. LSTM
  289. LuNET
  290. LUS algorithm
  291. LWL ALGORITHM
  292. MABC-EPSO
  293. machine leaning . CFS
  294. Machine learning based ID3
  295. MARK-ELM FPoly kernel set (proposed framework)
  296. Markov chain
  297. MCC
  298. Meta (KNN) with Neighbors (K)
  299. Meta (SMO)
  300. MID-PCA combining PCA (Principal Component Analysis)
  301. minimum redundancy maximum- relevance feature selection techniques
  302. ML/DL/Methods Used (SVR
  303. MLP
  304. MLP.
  305. Modified R
  306. MOGF-IDS
  307. MOPF
  308. MPLCS
  309. mRMR (minimum Redundancy Maximum Relevance – MID evaluation criteria)
  310. Multi-
  311. multiclass ensemble
  312. Multilayer Perception
  313. Multi-layer Perceptron
  314. MULTILAYER PERCEPTRON
  315. Multi-Layer Perceptron (MLP)
  316. Multi-Layer Perceptron CS
  317. Multilayer Perceptron neural network
  318. Multi-Layer Perceptron(ANN)
  319. multi-level hybrid SVM
  320. multilevel semi-supervised ML (MSML) including K-means
  321. Multinomial Naïve Bayes
  322. muti classification)
  323. N2B
  324. NA
  325. Naive Bayes
  326. Naïve Bayes
  327. Naive Bayes (NB)
  328. Naïve Bayes (NB)
  329. Naïve Bayes (NB) Algorithm
  330. Naïve Bayes algorithm
  331. Naïve Bayes Clustering
  332. Naive Bayesian
  333. Naïve Byes
  334. NaiveBayes
  335. Naïvebayes
  336. NaiveBayes (NB)
  337. Navie Bayes
  338. NB
  339. NB s are used
  340. NB Tree
  341. NBTree
  342. Network Flow Traffic Feature Extraction
  343. Neural Network
  344. Neural network (ANN)
  345. Neural Networks
  346. N-KPCA-GA-SVM
  347. NN
  348. non-linear SVM
  349. NPV
  350. NSL-KDD
  351. om Committee
  352. om Forest
  353. om Forest (RF)
  354. OM FOREST ALGORITHM
  355. om Forest Algorithm (T-SNERF)
  356. om forest decision tree s
  357. om Forest Importance
  358. om forest s (MRFA)
  359. om Forest.
  360. om Forests
  361. OM TREE
  362. omForest
  363. omizable
  364. One class (OCC)
  365. one-class SVM
  366. OneR
  367. Packet Network Traffic
  368. PART R
  369. PART. Several Tree-based
  370. PCA
  371. PCA-GA-SVM
  372. PDP
  373. PFI
  374. PGD
  375. presented causal model
  376. Principal Component Analysis (PCA)
  377. principal components analysis
  378. Proposed
  379. Proposed algorithm
  380. proposed approach
  381. Proposed deep SARSA
  382. Proposed DL-RF
  383. Proposed IDS
  384. Proposed method (ABC-MLP)
  385. Proposed model
  386. Proposed Technique
  387. PSO
  388. PSO algorithm
  389. PSO-ANN
  390. PSO-RF
  391. PSO-SVM
  392. ptimised QNN
  393. QCNN
  394. QDA
  395. QSVM
  396. Quadratic discriminant Analysis
  397. quantum convolutional neural network (QCNN)
  398. quantum support vector machine (QSVM)
  399. R
  400. R/forest
  401. R/tree
  402. radial basis function
  403. Radial Basis Function (RBF)
  404. Rain Forest
  405. RBF
  406. RBF Network
  407. RBF neural networks
  408. RBM
  409. Recurrent Neural Network (RNN)
  410. Recurrent neural networks
  411. Recursive Feature Elimination
  412. Recursive-Feature-Elimination (RFE) features are selected
  413. Regression
  414. ReNN
  415. REP Tree
  416. REPTree
  417. Resnet 152
  418. Restricted Boltzmann Machine (RBM)
  419. Restricted Boltzmann machines
  420. RF
  421. RF)
  422. RFC
  423. RFE-SMOTE
  424. RFs
  425. RIDOR
  426. Ripple Rule
  427. RMSE
  428. RNN
  429. RNN) etc. Write comma separated.
  430. RNN-DAE
  431. RNN-IDS
  432. RNN-LSTM
  433. Rough Set
  434. Rough Set Theory (RST) based approach
  435. RP
  436. RTree
  437. Rule-based ML algorithms are available in WEKA
  438. S III
  439. SA
  440. SCDNN
  441. Self taught learning (STL) : Sparse Autoencoder
  442. Self-organizing Map
  443. semi-supervised learning
  444. SFFS
  445. SGD
  446. SGD s
  447. SHAP
  448. Simple Logistic
  449. SimpleCart
  450. Simulated annealing (SA)
  451. single SVM
  452. Single-SVM
  453. SMO
  454. SMO)
  455. SMOTE
  456. SMOTE to mitigate the class imbalance of the dataset
  457. SOM
  458. SO-SVM
  459. Sparse auto-encoder
  460. Stacked generalisation
  461. Stacked LSTM
  462. Stacking (Jrip
  463. Stacking (KNN
  464. Stacking Dilated Convolutional Autoencoders
  465. STL
  466. Stochastic Gradient Descent (SGD) combined with different feature selection techniques (Correlation Ranking Filter
  467. Stochastic variant of Piramol estimated sub-gradient solver in SVM (SPegasos)
  468. Supervised learning using LSTM
  469. Support Vector Machine
  470. Support Vector Machine (SVM)
  471. support vector machine (SVM).
  472. Support vector machine[
  473. Support vector machines
  474. Support Vector Machines (SVM)
  475. Support Vector Machines (SVM).
  476. Support Vector Machines (SVMs)
  477. support-vector machine (SVM) with ant colony optimization (ACO)
  478. Survey of different methods
  479. Survey of different ML methods
  480. SVC
  481. SVM
  482. SVM techniques
  483. SVR used to create the model
  484. TAN "Tree Augmented Naive Bayes
  485. T-DFNN
  486. T-Distributed Stochastic Neighbour Embedding
  487. The CatSub
  488. the Decision Tree based C4.5 (J48)
  489. The paper gave investigation
  490. the proposed HFS-LGBM
  491. three-layer
  492. tree based
  493. TSE
  494. Unsupervised Extreme Learning Machine (UELM)
  495. Unsupervised learning using the deep autoencoder
  496. VanilaRNN
  497. VARIATIONAL AUTOENCODER
  498. VGG 16
  499. VGG16
  500. WFEU
  501. Xception
  502. XGB
  503. XGBoosT
  504. XGBoost (with ANN
  505. XGBoost to train an ML-based IDS
  506. ZeroR
  507. ZEROR ONER
  508.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement