Advertisement
richardmckinney

Untitled

Sep 15th, 2024
115
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 15.65 KB | None | 0 0
  1. %\documentclass[jou,12pt]{apa6}
  2.  
  3. \documentclass[letterpaper,12pt]{article}
  4.  
  5. \usepackage[top=.9in, left= .9in, right= .9in, bottom= .9in]{geometry}
  6. % \usepackage{biblatex}
  7. %% === basic packages ===
  8. \usepackage{latexsym}
  9. \usepackage[parfill]{parskip}% Activate to begin paragraphs with an empty line rather than an indent
  10. \usepackage{amssymb,amsmath, bm}
  11. \usepackage{graphicx}
  12. % \usepackage{caption}
  13. % \usepackage{subcaption}
  14. \usepackage{marvosym}
  15. %\usepackage{arydshln}
  16. \usepackage{bbm}
  17. \usepackage{booktabs}
  18. \usepackage{setspace}
  19. %\usepackage{times}
  20. \usepackage{subfigure}
  21. \usepackage{titlesec}
  22. \usepackage{threeparttable}
  23. \usepackage{natbib}
  24. \usepackage{mathtools}
  25. \usepackage{float}
  26. \usepackage{dsfont}
  27. \usepackage{xcolor}
  28. \usepackage[colorlinks,citecolor=blue,urlcolor=blue,linkcolor=blue,bookmarks=false]{hyperref}
  29. \usepackage{enumerate}
  30. \usepackage{xr}
  31. \usepackage{soul} % for highlighting
  32. \usepackage[title, titletoc]{appendix}
  33. \titlespacing*{\section}
  34. {0pt}{.5ex}{.5ex}
  35. \titlespacing*{\subsection}
  36. {0pt}{.5ex}{.5ex}
  37. \titlespacing*{\subsubsection}
  38. {0pt}{.5ex}{.5ex}
  39. \titlespacing*{\paragraph}
  40. {0pt}{.5ex}{.5ex}
  41.  
  42. %% === bibliography packages ===
  43. \usepackage{natbib}
  44. %\bibliographystyle{natbib}
  45. %\bibliographystyle{apalike}
  46.  
  47. \usepackage{capt-of}% or use the larger `caption` package
  48.  
  49. % === dcolumn package ===
  50. \usepackage{dcolumn}
  51. \newcolumntype{.}{D{.}{.}{-1}}
  52. \newcolumntype{d}[1]{D{.}{.}{#1}}
  53.  
  54. % == Drawing
  55. \usepackage{pgf,tikz}
  56. \usetikzlibrary{positioning}
  57. \usetikzlibrary{shapes}
  58. \usepackage{pgfplots}
  59. \pgfplotsset{compat=1.18}
  60. \usetikzlibrary{matrix}      
  61. \usetikzlibrary{arrows,shapes,positioning,shadows,trees}
  62.  
  63. %\renewcommand{\rmdefault}{phv} % Arial
  64. %\renewcommand{\sfdefault}{phv} % Arial
  65.  
  66. %\theoremheaderfont{\scshape}
  67. \usepackage{amsthm}
  68. \newtheorem{theorem}{Theorem}[section]
  69. \newtheorem{lemma}[theorem]{Lemma}
  70. \newtheorem{proposition}[theorem]{Proposition}
  71. \newtheorem{corollary}[theorem]{Corollary}
  72. \newtheorem{problem}[theorem]{Problem}
  73. \newtheorem{algorithm}[theorem]{Algorithm}
  74. \newtheorem{remark}[theorem]{Remark}
  75. \newtheorem{assumption}[theorem]{Assumption}
  76.  
  77. \def\ci{\perp\!\!\!\perp}
  78.  
  79. %\newcommand{\qed}{\hfill \ensuremath{\Box}}
  80. \newcommand\indep{\protect\mathpalette{\protect\independenT}{\perp}}
  81. \newcommand\ms{\mbox{\hspace{.135in}}}
  82.  
  83. \renewcommand{\floatpagefraction}{.8} % GCL added to prevent figure-only pages (now over 80% instead of 60% by default)
  84.  
  85. \def\as{\stackrel{as}{\rightarrow}}
  86. \def\inprob{\stackrel{p}{\rightarrow}}
  87. \def\indist{\rightsquigarrow}
  88. \def\ind{\perp\!\!\!\perp}
  89. \def\T{{ \mathrm{\scriptscriptstyle T} }}
  90. \def\CS{{ \mathrm{\scriptscriptstyle CS} }}
  91. \def\FH{{ \mathrm{\scriptscriptstyle FH} }}
  92. \def\flX{{\lfloor X \rfloor}}
  93. \def\flT{{\lfloor T \rfloor}}
  94. \newcommand{\var}{\text{var}}
  95. \newcommand{\sd}{\text{sd}}
  96. \newcommand{\cov}{\text{cov}}
  97. \newcommand{\Pb}{\mathbb{P}}
  98. \newcommand{\Pn}{\mathbb{P}_n}
  99. \newcommand{\eff}{\text{\footnotesize{eff}}}
  100. \newcommand{\E}{\mathbb{E}}
  101. \newcommand{\R}{\mathbb{R}}
  102.  
  103. \newcommand{\tx}{\text{x}}
  104.  
  105. \newcommand{\bff}{\mathbf{f}}
  106. \newcommand{\bZ}{\mathbf{Z}}
  107. \newcommand{\bz}{\mathbf{z}}
  108. \newcommand{\bX}{X}
  109. \newcommand{\bx}{X}
  110. \newcommand{\bV}{\mathbf{V}}
  111. \newcommand{\bv}{\mathbf{v}}
  112. \newcommand{\bW}{\mathbf{W}}
  113. \newcommand{\bw}{\mathbf{w}}
  114. \newcommand{\bO}{\mathbf{O}}
  115. \newcommand{\bo}{\mathbf{o}}
  116. \newcommand{\s}[1]{\mathcal{#1}}
  117.  
  118. \newcommand{\norme}[1]{\left\Vert #1\right\Vert}
  119.  
  120. \newcommand\independent{\protect\mathpalette{\protect\independenT}{\perp}}
  121. \def\independenT#1#2{\mathrel{\rlap{$#1#2$}\mkern2mu{#1#2}}}
  122.  
  123. \newcommand{\bpsi}{\boldsymbol\psi}
  124. \newcommand{\bdelta}{\boldsymbol\delta}
  125. \usepackage{color}
  126. \newcommand{\kt}[1]{[\textcolor{red}{\textit{KT: #1}}]}
  127. \newcommand{\al}[1]{[\textcolor{orange}{\textit{AL: #1}}]}
  128.  
  129. % \pagestyle{empty}
  130. \newcommand\nnfootnote[1]{%
  131.   \begin{NoHyper}
  132.  \renewcommand\thefootnote{}\footnote{#1}%
  133.   \addtocounter{footnote}{-1}%
  134.   \end{NoHyper}
  135. }
  136.  
  137. \def\spacingset#1{\renewcommand{\baselinestretch}%
  138. {#1}\small\normalsize} \spacingset{1}
  139.  
  140. %%%%%%%%%%%%%
  141. % word count
  142. %%%%%%%%%%%%%
  143. % https://www.overleaf.com/learn/how-to/Is_there_a_way_to_run_a_word_count_that_doesn%27t_include_LaTeX_commands%3F#Run_texcount_with_custom_parameters
  144. % \usepackage{verbatim}
  145.  
  146. % \newcommand{\detailtexcount}[1]{%
  147. %   \immediate\write18{texcount -merge -sum -q #1.tex output.bbl > #1.wcdetail }%
  148. %   \verbatiminput{#1.wcdetail}%
  149. % }
  150.  
  151. % \newcommand{\quickwordcount}[1]{%
  152. %   \immediate\write18{texcount -1 -sum -merge -q #1.tex output.bbl > #1-words.sum }%
  153. %   \input{#1-words.sum} words%
  154. % }
  155.  
  156. % \newcommand{\quickcharcount}[1]{%
  157. %   \immediate\write18{texcount -1 -sum -merge -char -q #1.tex output.bbl > #1-chars.sum }%
  158. %   \input{#1-chars.sum} characters (not including spaces)%
  159. % }
  160.  
  161. % %TC:ignore
  162. % \quickwordcount{opto_causal_JASA_ACS}
  163. % \quickcharcount{opto_causal_JASA_ACS}
  164. % \detailtexcount{opto_causal_JASA_ACS}
  165. % %TC:endignore
  166.  
  167. \begin{document}
  168.  
  169. \newcommand{\blind}{0}
  170. \newcommand{\tit}{\bf Analyses }
  171. % 1) Shedding Light on Causal Inference: ...
  172. % 2)
  173. % Marginal Structural Models for Sequential Excursion Effects
  174. % \newcommand{\tit}{\bf Dynamic longitudinal marginal structural models for optogenetic designs}
  175.  
  176. % nonparametric
  177. % sequentially randomized trials
  178. % sequential optogenetic designs
  179. % DTR
  180. % Positivity
  181. % Nonparametric Causal Inference for Sequential Optogenetic Designs: Dynamic Regimes with Positivity Violations
  182. % Nonparametric Causal Inference in
  183.  
  184. % long
  185. % Nonparametric Causal Inference for Sequential Optogenetic Designs: Excursion Effects for Dynamic Regimes
  186.  
  187. % short
  188. % Nonparametric Causal Inference for Optogenetic Designs: Sequential Excursion Effects for Dynamic Regimes
  189.  
  190. %
  191.  
  192. % treatment sequence/sequence excursion effects
  193.  
  194. % micro longitudinal effects
  195. % excursion effects
  196. % longitudinal excursion effects
  197. % multi-timepoint excursion effects
  198. % HR-MSMs
  199. % (causal) contrasts of mean counterfactual of deterministic regimes
  200. % treatment effects
  201.  
  202. \if0\blind
  203.  
  204. {\title{\tit}
  205. % \thanks{The authors declare no conflicts.
  206. % }
  207.  
  208. % \author{Gabriel Loewinger\thanks{G.L. and A.W.L. contributed equally to this work.} \thanks{National Institute of Mental Health, NIH. Email: gloewinger@gmail.com},
  209. % \and Alexander W. Levis$^*$\thanks{Postdoctoral Researcher, Carnegie Mellon University. Email: alevis@cmu.edu},
  210. % \and
  211. % Francisco Pereira\thanks{National Institute of Mental Health, NIH.}
  212. % }
  213.  
  214. % \def\thefootnote{1}\footnotetext{G.L. and A.W.L. contributed equally to this work.}
  215. % \nnfootnote{G.L. and A.W.L. contributed equally to this work.}
  216.  
  217.  
  218. \date{}
  219.  
  220. \maketitle
  221. }\fi
  222.  
  223. \if1\blind
  224. \title{\bf \tit}
  225. \maketitle
  226. \fi
  227.  
  228. \section{Methods}
  229. We modeled deal size to understand the factors that encourage and discourage climate investment. Specifically, we estimated the degree to which \textit{Environmental urgency}, \textit{Economic conditions}, and \textit{Institutional stability} variables (operationally defined) are associated with deal size. We fit a collection of working linear models to estimate the best linear \textit{projection} of the treatment (policy instruments) on the outcome (deal size). That is, we fit a model that places structure on the mean of the outcome (deal size), but not on the variance; we quantified uncertainty and conducted inference with a robust variance estimator. We adjust for a small set of observed potential confounders (with linear terms). We followed up with an Autoregressive models of these models to understand how the above factors change the mean outcome given levels during previous years.
  230.  
  231. \subsection{Notation}
  232. We denote the outcome variable, $\texttt{deal}_i$, as the size of the deal $i \in \{1,2,...,n\}$. We denote $\texttt{country}_i$ as the country where the invested company of $\texttt{deal}_i$ was located and $\texttt{year}_i$ as the year that $\texttt{deal}_i$ took place.  For deal $i$, we denote the following variables for the corresponding country: $\texttt{CVI}_i$ is that country's climate vulnerability index, $\texttt{ease}_i$ is its Ease of Doing Business score, $\texttt{interest}_i$ is the interest rate, $\texttt{CPI}_i$ is the Consumer Price Index, $\texttt{GNI}_i$ is the Gross National Income, $\texttt{PSI}_i$ is the Political Stability Index, $\texttt{corruption}_i$ is the XXX corruption score,  $\texttt{ER}_i$ is the Exchange Rate. We included a separate intercept (fixed effect) in the model for each year from 2000-2020. (i.e., we included year as a factor variable in the model). To avoid cumbersome notation, we denote the vector of year-specific indicator variables (to represent the different levels of the factor variable \texttt{year}) as $\mathbf{{year}}_i$, and the corresponding vector of regression coefficients as $\tilde{\boldsymbol{\beta}}$. In shorthand, we denote the vector of variables of interest as $\mathbf{A}_i$, the set of variables we adjust for as $\mathbf{X}_i$, and the set of coefficients with a superscript (e.g.,  $\boldsymbol{\beta}^a$, $\boldsymbol{\beta}^x$).
  233.  
  234. \subsection{Models}
  235. \paragraph{Model 1} We fit the following working linear model to estimate the association between the intensity of the policy and the amount of deal size:
  236. %%%%%%%%%%%%%%%%%%%%%%%%%%
  237. \begin{align*} \label{mod1}
  238.   \mathbb{E} \left [ \texttt{deal}_i \mid \mathbf{A}_i, \mathbf{X}_i, \mathbf{M}_i \right ] =& { \color{gray} \beta_0} + {\color{blue} \beta_1 \texttt{CVI}_i + \beta_2 \texttt{ease}_i + \beta_3 \texttt{interest}_i + \beta_4 \texttt{CPI}_i} + \\ & {\color{blue}  \beta_5 \texttt{enterprise}_i + \beta_6 \texttt{PSI}_i + \beta_7 \texttt{corrupt}_i} +\\ & {\color{blue} \beta_8 \texttt{GNI}_i + \beta_{9} \texttt{interest}_i +
  239.     \beta_{10} \texttt{unemploy}_i} +\\
  240.    & { \color{gray} \beta_{11} \texttt{ER}_i +
  241. \mathbf{{year}}_{i}^T \tilde{\boldsymbol{\beta}} }.
  242. \end{align*}
  243. %%%%%%%%%%%%%%%%%%%%%%%%%%
  244. We express {\color{blue} the main variables of interest in blue}, and {\color{gray} the variables we are adjusting for in gray}. We write this same model using the shorthands above as \newline
  245. %%%%%%%%%%%%%%%%%%%%%%%%%%
  246. \begin{align*} \label{mod1}
  247.   \mathbb{E} \left [ \texttt{deal}_i \mid \mathbf{A}_i, \mathbf{X}_i \right ] =& \beta_0 + {\color{blue} \mathbf{A}_i^T \boldsymbol{\beta}^a } + {\color{gray} \mathbf{X}_i^T \boldsymbol{\beta}^x }. \tag{1}
  248. \end{align*}
  249. %%%%%%%%%%%%%%%%%%%%%%%%%%
  250. The inferential targets were the coefficients ${\color{blue} \boldsymbol{\beta}^a} \in \mathbb{R}^{10}$. \newline
  251.  
  252. \paragraph{Model 2} We next sought to understand how the association between the variables in the vector $\mathbf{A}_i$ are \textit{modified} by United Nations developed/developing country status. We sought to test whether investment patterns in developing country businesses may be driven by negative perceptions unrelated to the Enviornmental Urgency, Economic conditions, and Institutional stability variables. If investors are only avoiding deals due to, for example, institutional instability, then one would expect the magnitude of the deal size–institutional stability association to be comparable in developed and developing countries. Conversely, if investors are avoiding investment due to, for example, negative perceptions of those countries, one would anticipate a statistically significant difference in the magnitude of associations between developed/developing countries. Thus we fit a model similar to that in expression \ref{mod1}, except that we include pairwise interactions between $\texttt{dev}_i$ and all variables in $\mathbf{A}_i$. These interaction terms (denoted below as $\boldsymbol{\gamma}$) thus provide one way to formalize our question into a hypothesis test (albeit with the caveat that the variables $\mathbf{A}_i$ may only capture some financial reasons why investors may be hesitant).
  253.  
  254. Specifically, we denote $\texttt{dev}_i = 1$ if $\texttt{country}_i$ is ``developed'' and 0 otherwise. We write the pairwise multiplication of the terms in the interaction as $\texttt{dev}_i * \mathbf{A}_i$, and the associated regression coefficients as $\boldsymbol{\gamma}$. We include a main effect of $\texttt{dev}_i$, but not $\texttt{country}_i$ because we sought to understand variability across countries, not within-country. The targets of inference in this model were the interaction coefficients, $\boldsymbol{\gamma}$.
  255. %%%%%%%%%%%%%%%%%%%%%%%%%%
  256. \begin{align*} \label{mod1.2}
  257.   \mathbb{E} \left [ \texttt{deal}_i \mid \mathbf{A}_i, \mathbf{X}_i, \texttt{dev}_i \right ] =& \beta_0 + {\color{red} \texttt{dev}_i \beta_1 +} {\color{blue}   \mathbf{A}_i^T \boldsymbol{\beta}^a } + {\color{red}   \left( \texttt{dev}_i *\mathbf{A}_i \right)^T \boldsymbol{\gamma}} + {\color{gray} \mathbf{X}_i^T \boldsymbol{\beta}^x }  \tag{2}
  258. \end{align*}
  259. %%%%%%%%%%%%%%%%%%%%%%%%%%
  260.  
  261. % \paragraph{Model 2}
  262. % We next model the deal-size amount as a function of a set of policy instruments, where the instrument $l$ is denoted as $\texttt{policy}_l \in \{0,1\}$ and $\mathbf{A}_i = [\texttt{policy}_1~~\texttt{policy}_2~~ \ldots ~~\texttt{policy}_L]$. To avoid confusion, we denote the regression coefficients for Models 2 and 2.2 as $\boldsymbol{\alpha}$ and $\tilde{\boldsymbol{\alpha}}$.
  263. % %%%%%%%%%%%%%%%%%%%%%%%%%%
  264. % %%%%%%%%%%%%%%%%%%%%%%%%%%
  265. % \begin{align*} \label{mod2}
  266. %    \mathbb{E} \left [ \texttt{deal}_i \mid \mathbf{A}_i, \mathbf{X}_i, \mathbf{M}_i \right ] =& \alpha_0 + \mathbf{A}_i^T \boldsymbol{\alpha}^a +  \mathbf{M}_i^T \boldsymbol{\alpha}^m + \mathbf{X}_i^T \boldsymbol{\alpha}^x \tag{2}
  267. % \end{align*}
  268. % %%%%%%%%%%%%%%%%%%%%%%%%%%
  269. % %%%%%%%%%%%%%%%%%%%%%%%%%%
  270. % \paragraph{Model 2.2} Similar to above, we fit a related model that without potential mediators.
  271. % %%%%%%%%%%%%%%%%%%%%%%%%%%
  272. % %%%%%%%%%%%%%%%%%%%%%%%%%%
  273. % \begin{align*} \label{mod2.2}
  274. %    \mathbb{E} \left [ \texttt{deal}_i \mid \mathbf{A}_i, \mathbf{X}_i \right ] =& \tilde{\alpha}_0 + \mathbf{A}_i^T \tilde{\boldsymbol{\alpha}}^a +  \mathbf{X}_i^T \tilde{\boldsymbol{\alpha}}^x \tag{2.2}
  275. % \end{align*}
  276. % %%%%%%%%%%%%%%%%%%%%%%%%%%
  277. % \paragraph{Model 5}
  278. % We next model the policy intensity score, $\texttt{intensity}_i$ as a function of the potential confounders and mediators. To avoid confusion, we denote the regression coefficients for Models 5 and 5.2 as $\boldsymbol{\gamma}$. For Model 5, we include the vector of covariates, $\tilde{\mathbf{X}}_i$, which contains the following variables: $\texttt{CPI}_i$, $\texttt{interest}_i$, $\texttt{unemploy}_i$, $\texttt{GDP}_i$, $\texttt{HDI}_i$, $\texttt{sector}_{i,j}$, $\texttt{year}_{i,k}$.
  279. % %%%%%%%%%%%%%%%%%%%%%%%%%%
  280. % \begin{align*} \label{mod5}
  281. %    \mathbb{E} \left [ \texttt{intensity}_i \mid \tilde{\mathbf{X}}_i \right ] =& \gamma_0 + \tilde{\mathbf{X}}_i^T \boldsymbol{\gamma}^x. \tag{5}
  282. % \end{align*}
  283. % %%%%%%%%%%%%%%%%%%%%%%%%%%
  284. \subsection{Regression Approach}
  285. We fit \textit{projection}-based semi-parametric regressions with the above working models. We use a robust (sandwich) variance estimator (``CR2'')  \citep{CR2_sandwich} for inference with the $\texttt{sandwich}$ package in R \citep{sandwich_package}. We specified clustering at the country level to account for the longitudinal structure of the data because we anticipate outcomes $\texttt{deal}_i$ are correlated across deals within a country. However, this variance estimator is valid regardless of whether we mispecified the working correlation structure. Together this approach allows us to formalize our scientific questions within a null hypothesis testing framework with fewer assumptions about the distribution of $\texttt{deal}_i \mid \mathbf{A}_i, \mathbf{X}_i$.
  286. % We perform multiple-comparison corrections when needed.
  287.  
  288. \bibliographystyle{asa}
  289. \bibliography{refs}
  290.  
  291. % \bibliography{refs}
  292. % \bibliographystyle{biom}
  293. %\singlespacing
  294. % \bibliography{refs}
  295. % {\footnotesize \bibliography{refs}}
  296. \end{document}
  297.  
  298.  
  299.  
  300.  
  301.  
  302.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement