Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- # USAGE
- # python ball_tracking.py --video ball_tracking_example.mp4
- # python ball_tracking.py
- # import the necessary packages
- from collections import deque
- import numpy as np
- import argparse
- import imutils
- import cv2
- # construct the argument parse and parse the arguments
- ap = argparse.ArgumentParser()
- ap.add_argument("-v", "--video",
- help="path to the (optional) video file")
- ap.add_argument("-b", "--buffer", type=int, default=64,
- help="max buffer size")
- args = vars(ap.parse_args())
- # define the lower and upper boundaries of the "green"
- # ball in the HSV color space, then initialize the
- # list of tracked points
- greenLower = (29, 86, 6)
- greenUpper = (64, 255, 255)
- pts = deque(maxlen=args["buffer"])
- # if a video path was not supplied, grab the reference
- # to the webcam
- if not args.get("video", False):
- camera = cv2.VideoCapture(0)
- # otherwise, grab a reference to the video file
- else:
- camera = cv2.VideoCapture(args["video"])
- # keep looping
- while True:
- # grab the current frame
- (grabbed, frame) = camera.read()
- # if we are viewing a video and we did not grab a frame,
- # then we have reached the end of the video
- if args.get("video") and not grabbed:
- break
- # resize the frame, blur it, and convert it to the HSV
- # color space
- frame = imutils.resize(frame, width=600)
- # blurred = cv2.GaussianBlur(frame, (11, 11), 0)
- hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
- # construct a mask for the color "green", then perform
- # a series of dilations and erosions to remove any small
- # blobs left in the mask
- mask = cv2.inRange(hsv, greenLower, greenUpper)
- mask = cv2.erode(mask, None, iterations=2)
- mask = cv2.dilate(mask, None, iterations=2)
- # find contours in the mask and initialize the current
- # (x, y) center of the ball
- cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
- cv2.CHAIN_APPROX_SIMPLE)[-2]
- center = None
- # only proceed if at least one contour was found
- if len(cnts) > 0:
- # find the largest contour in the mask, then use
- # it to compute the minimum enclosing circle and
- # centroid
- c = max(cnts, key=cv2.contourArea)
- ((x, y), radius) = cv2.minEnclosingCircle(c)
- M = cv2.moments(c)
- center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
- # only proceed if the radius meets a minimum size
- if radius > 10:
- # draw the circle and centroid on the frame,
- # then update the list of tracked points
- cv2.circle(frame, (int(x), int(y)), int(radius),
- (0, 255, 255), 2)
- cv2.circle(frame, center, 5, (0, 0, 255), -1)
- # update the points queue
- pts.appendleft(center)
- # loop over the set of tracked points
- for i in xrange(1, len(pts)):
- # if either of the tracked points are None, ignore
- # them
- if pts[i - 1] is None or pts[i] is None:
- continue
- # otherwise, compute the thickness of the line and
- # draw the connecting lines
- thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
- cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
- # show the frame to our screen
- cv2.imshow("Frame", frame)
- key = cv2.waitKey(1) & 0xFF
- # if the 'q' key is pressed, stop the loop
- if key == ord("q"):
- break
- # cleanup the camera and close any open windows
- camera.release()
- cv2.destroyAllWindows()
Add Comment
Please, Sign In to add comment