Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- \documentclass{beamer}
- \usepackage[utf8]{inputenc}
- \usepackage{amsmath}
- \usepackage{amssymb}
- \usepackage[english, greek]{babel}
- \title{Document 4 - Basics in Beamer}
- \author{Thomas Boufikos}
- \date{05/10/2021}
- \usetheme{Boadilla}
- \usecolortheme{whale}
- \begin{document}
- \selectlanguage{english}
- \begin{frame}{Telecommunication Channel}
- \[
- v(t) = \sum _{n=-\infty} ^ {\infty} a_ng_T(t-nT) \\
- \]
- $
- h(t) = c(t) \textasteriskcentered g_T(t) \\
- x(t) = h(t) \textasteriskcentered g_R(t) \\
- y(t) = \sum _{n=-\infty} ^ {\infty} a_nx(t-nT) + v(t) \\
- y(mT+t_0) = a_mx(t_0) + \sum _{n \neq m} a_nx((m-n)T + t_0) + v_m \\
- v_m = v(mT + t_0) \\
- $
- \\ \\
- \selectlanguage{greek}
- Όλα τα πάνω ισχύουν, εφόσον η δειγματοληψία γίνει τις χρονικές στιγμές
- $ mT + T_0 $, διαφορετικά μιλάμε για μία τυχαία στιγμή $ t $.
- \end{frame}
- \selectlanguage{english}
- \begin{frame}{Telecommunication Channel - Continue}
- \selectlanguage{greek}
- Αν θέλουμε να στείλουμε τα $ a_n $, στέλνουμε τα $ b_n $, σύμφωνα με τη σχέση: $ b_n = 2a_n - 1$, επομένως τα μπιτ πληροφορίας $ a_n $ γίνονται πλάτη $ b_n $. Για παράδειγμα: \\ \\
- \phantom{ssssssss} Πληροφορία:
- \begin{tabular}{|c|c|c|c|c|c|c|c|}
- \hline
- a_0 & a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 \\
- \hline
- 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
- \hline
- \end{tabular}
- Μεταδιδόμενη ακολουθία:
- \begin{tabular}{|c|c|c|c|c|c|c|c|}
- \hline
- b_0 & b_1 & b_2 & b_3 & b_4 & b_5 & b_6 & b_7 \\
- \hline
- 1 & -1 & -1 & -1 & 1 & 1 & -1 & 1 \\
- \hline
- \end{tabular}
- \end{frame}
- \begin{frame}{Basic Math Stuff}
- Here is some text followed by an equation: \\
- \[
- p(x) = ax^2 + bx + c = 0
- \] \\
- and the polynomial roots are: \\
- \begin{align*}
- x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}
- \end{align*}, where:
- $ \Delta = b^2 - 4ac $
- \end{frame}
- \begin{frame}{Columns}
- This is the text above the 2 columns. I will leave a vertical space of 5mm and then
- I will write text in the 2 columns.
- \vspace{5mm}
- \begin{columns}
- \column{0.48 \linewidth}
- This is the 1st column. Here is some additional text to ensure that there is enough space to fill out the width of slide. Placement: left!
- \column{0.48 \linewidth}
- This is the 2nd column. Here is some additional text to ensure that there is enough space to fill out the width of slide. Placement: right! \\
- I will write down more text to enlight the difference.
- \end{columns}
- \vspace{5mm}
- That's all about the columns. End of text!
- \end{frame}
- \begin{frame}{Pausing text}
- Here is some text. \\
- \pause
- Here is some more text. \\
- \pause
- More, more, more text! \\
- \pause
- Next step is the final one. \\
- \pause
- Final text. \\
- \end{frame}
- \begin{frame}{Specification Overlays}
- \begin{itemize}
- \item<1-> This appears on all frames. \\
- \item<2> This appears only on frame 2. \\
- \item<2,4> This appears on frames 2 and 4. \\
- \item<1-3> This appears on frames 1-3. \\
- \item<2-> This appears on frames 2-4. \\
- \item<6> This appears only on last frame (6th). \\
- \end{itemize}
- \end{frame}
- \begin{frame}{Specification Overlays}
- Frame \only<1>{1} \only<2>{2}
- \begin{itemize}
- \item This will be \textbf<2>{bold} text.\\
- \item This will be \textit<2>{italic} text.\\
- \item This will be \textcolor<2>{blue}{blue} text.\\
- \item This will be \textcolor<2>{pink}{pink} text.\\
- \end{itemize}
- \end{frame}
- \begin{frame}{Blocks}
- Blocks are like theorem environments.
- \begin{block}{Block 1}
- This is block 1. \\
- \end{block}
- \begin{block}{Block 2}
- This is block 2. \\
- It is under block 1 of course. \\
- \end{block}
- \newtheorem{thm}{Thomas Theorem}
- \begin{thm}[Pythagorean Theorem]
- In a triangle with angles $ a = 90, b < 90, c < 90 $, if C, A, B are the opposite sides of these angles, there must be: \\
- \[
- C^ 2 = A^2 + B^2
- \]
- \end{thm}
- \begin{proof}
- There is no supported proof right now!
- \end{proof}
- \end{frame}
- \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement