Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- method_configs["nerfplayer"] = TrainerConfig(
- method_name="nerfplayer",
- steps_per_eval_batch=1000,
- steps_per_eval_all_images=0,
- steps_per_eval_image=500,
- steps_per_save=10000,
- save_only_latest_checkpoint=False,
- max_num_iterations=30000,
- mixed_precision=True,
- pipeline=VanillaPipelineConfig(
- datamanager=VanillaDataManagerConfig(
- dataparser=BlenderDataParserConfig(),
- train_num_rays_per_batch=4096,
- eval_num_rays_per_batch=2048,
- ),
- model=NerfplayerModelConfig(
- eval_num_rays_per_chunk=1 << 15,
- log2_hashmap_size=17,
- temporal_dim=64,
- depth_weight=1.0,
- depth_sigma=0.01,
- prob_reg_loss_mult=0.1,
- distortion_loss_mult=0.001,
- temporal_tv_weight=1.0,
- ),
- ),
- optimizers={
- "proposal_networks": {
- "optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-12),
- "scheduler": CosineDecaySchedulerConfig(warm_up_end=512, max_steps=30000, learning_rate_alpha=0),
- },
- "fields": {
- "optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-12),
- "scheduler": CosineDecaySchedulerConfig(warm_up_end=512, max_steps=30000, learning_rate_alpha=0),
- },
- },
- viewer=ViewerConfig(num_rays_per_chunk=64000),
- vis="viewer",
- )
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement