Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- ;;; Deliverable D17 (V2.1) in KIF (text format)
- ;;; 28 May 03
- ;THIS IS A TRANSLATION IN KIF (ACCORDING TO THE KIF-DRAFT
- ;PROPOSED TO THE AMERICAN NATIONAL STANDARD NCITS.T2/98-004
- ;http://logic.stanford.edu/kif/dpans.html) OF THE
- ;DELIVERABLE D17 V2.1 of which
- ;it should be considered an appendix.
- ;FOR aknowldegments, please check the main document D17
- ;FOR comments on this version, please contact:
- ;stborgo@indiana.edu
- ;REVIEW INFO
- ;CHANGES - COMMENTS
- ;(changes in comments OR due TO changes in the Deliverable
- ;D17 are NOT reported)
- ;(D13) changed WORD into WORLD - Typo
- ;(NA3)-(NA9) have been dropped - These occur already
- ;somewhere ELSE
- ;(NA10)-(NA12) are left AS comments - These are guaranteed
- ;by def. (ND5)
- ;(NA13) has been dropped - It follows from (NA14) AND (D2)
- ; Basic functions AND relations
- ; new non-rigid universals introduced in specialized
- ; theories OR in new versions of DOLCE need TO be added in
- ; this definition AS new disjunction clauses of
- ; form (= ?f ä)
- ; (ND1): universals
- (defrelation UNIVERSAL (?f) :=
- (OR (X ?f)))
- ; new rigid universals introduced in new versions of DOLCE
- ; (OR by the user) need TO be added in this definition
- ; (ND2) rigid universals
- (defrelation X (?f) :=
- (OR (= ?f ALL) (= ?f AB) (= ?f R) (= ?f TR) (= ?f T) (= ?f PR) (=
- ?f S) (= ?f AR)
- (= ?f Q) (= ?f TQ) (= ?f TL) (= ?f PQ) (= ?f SL) (= ?f AQ) (= ?f ED)
- (= ?f M) (= ?f
- PED) (= ?f F) (= ?f POB) (= ?f APO) (= ?f NAPO) (= ?f NPED) (= ?f
- NPOB) (= ?f MOB)
- (= ?f SOB) (= ?f ASO) (= ?f SAG) (= ?f SC) (= ?f NASO) (= ?f AS) (=
- ?f PD) (= ?f
- EV) (= ?f ACH) (= ?f ACC) (= ?f STV) (= ?f ST) (= ?f PRO))))
- ; there are no particulars in this version of DOLCE, any
- ; particular has TO be added in this definition, the def.
- ; will have form : (OR (= ?x ä) (= ?x ä))
- ; (ND3) particulars
- (defrelation PARTICULAR(?x) :=
- )
- ; there are no named worlds in this version of DOLCE, any
- ; world has TO be added in this definition, the def. Will
- ; have form : (OR (= ?w ä) (= ?w ä))
- ; (ND4) worlds
- (defrelation WORLD(?w) :=
- )
- ; (ND5) accessibility relation on worlds
- (defrelation WLDR(?w ?v) :=
- (AND (WORLD ?w) (WORLD ?v)))
- ; (ND6) Parthood
- (defrelation P (?w ?x ?y) :=>
- (AND (WORLD ?w) (PARTICULAR ?x) (PARTICULAR ?y)))
- ; (ND7) Temporal Parthood
- (defrelation P (?w ?x ?y ?t) :=>
- (AND (WORLD ?w) (PARTICULAR ?x) (PARTICULAR ?y) (PARTICULAR ?t)))
- ; (ND8) Constitution
- (defrelation K (?w ?x ?y ?t) :=>
- (AND (WORLD ?w) (PARTICULAR ?x) (PARTICULAR ?y) (PARTICULAR ?t)))
- ; (ND9) Participation
- (defrelation PC (?w ?x ?y ?t) :=>
- (AND (WORLD ?w) (PARTICULAR ?x) (PARTICULAR ?y) (PARTICULAR ?t)))
- ; (ND10) Quality
- (defrelation qt (?w ?x ?y) :=>
- (AND (WORLD ?w) (PARTICULAR ?x) (PARTICULAR ?y)))
- ; (ND11) Quale
- (defrelation ql (?w ?x ?y) :=>
- (AND (WORLD ?w) (PARTICULAR ?x) (PARTICULAR ?y)))
- ; (ND12) Quale (temporal)
- (defrelation ql (?w ?x ?y ?t) :=>
- (AND (WORLD ?w) (PARTICULAR ?x) (PARTICULAR ?y) (PARTICULAR ?t)))
- ;*****************************************************
- ; (NA1) NEW AXIOM: total domain
- (forall (?x)
- (OR (PARTICULAR ?x) (UNIVERSAL ?x) (WORLD ?x)))
- ; (NA2) partition of the domain
- (forall (?x)
- (AND (<=> (PARTICULAR ?x)
- (AND (NOT (UNIVERSAL ?x)) (NOT (WORLD ?x))))
- (<=> (UNIVERSAL ?x)
- (AND (NOT (PARTICULAR ?x)) (NOT (WORLD ?x))))
- (<=> (WORLD ?x)
- (AND (NOT (PARTICULAR ?x)) (NOT (UNIVERSAL ?x))))))
- ; Formal Characterization
- ;PRINCIPLES USED IN THE TRANSLATION IN KIF:
- ;Modal operators of possibility AND necessity are translated in the standard
- ; way, see FOR instance p516 of Handbook of Logic in AI AND Logic Prog. Vol.4;
- ;The indeces of relations are included prefixing a dot (we preserve
- the capital OR
- ; lower case distinction)
- ;These are the only predicates (with their arity) that DO NOT have
- possible worlds
- ; AS arguments:
- ; X_1,PARTICULAR_1,UNIVERSAL_1, =_2
- ;No need FOR Barcan formulas, the domain of particulars turns out TO be unique
- ; in the translation
- ;WLDR is an equivalence relation (from corrispondence theory, this implies
- ; that WLDR is a relation FOR S5). The axioms (NA10)-(NA12) are NOT necessary
- ; because of our definition of WLDR.
- ; (NA10)
- ;(forall (?w0) (=> (WORLD ?w0) (WLDR ?w0 ?w0)))
- ; (NA11)
- ;(forall (?w0 ?w1)
- ; (=> (AND (WLDR ?w0 ?w1) (WORLD ?w0) (WORLD ?w1))
- ; (WLDR ?w1 ?w0)))
- ; (NA12)
- ;(forall (?w0 ?w1 ?w2)
- ; (=> (AND (WLDR ?w0 ?w1)
- ; (WLDR ?w1 ?w2)
- ; (WORLD ?w0)
- ; (WORLD ?w1)
- ; (WORLD ?w2))
- ; (WLDR ?w0 ?w2)))
- ; ***THE UNIVERSALS ARE NECESSARILY NON-EMPY***-- axiom
- ; (NA14) -- axiom
- (forall (?w ?f) (=> (AND (UNIVERSAL ?f) (WORLD ?w))
- (NEP ?w ?f)))
- ; (NA15) -- axiom
- (forall (?w ?f) (=> (AND (UNIVERSAL ?f) (WORLD ?w))
- (OR (NOT (X ?f)) (RG ?w ?f))))
- ; (NA16) Instances of PT -- axiom
- (forall (?w0) (=> (WORLD ?w0)
- (AND (PT ?w0 ALL ED PD Q AB)
- (PT ?w0 ED PED NPED AS)
- (PT ?w0 PED M F POB)
- (PT ?w0 POB APO NAPO)
- (PT ?w0 NPOB MOB SOB)
- (PT ?w0 SOB ASO NASO)
- (PT ?w0 ASO SAG SC)
- (PT ?w0 PD EV STV)
- (PT ?w0 EV ACH ACC)
- (PT ?w0 STV ST PRO)
- (PT ?w0 Q TQ PQ AQ)
- (PT ?w0 R TR PR AR))))
- ; (NA17) Instances of SB -- axiom
- (forall (?w0)
- (=> (WORLD ?w0)
- (AND (SB ?w0 ALL ED) (SB ?w0 ALL PD) (SB ?w0 ALL Q) (SB ?w0 ALL AB)
- (SB ?w0 ED PED) (SB ?w0 ED NPED) (SB ?w0 ED AS)
- (SB ?w0 PED M) (SB ?w0 PED F) (SB ?w0 PED POB)
- (SB ?w0 POB APO) (SB ?w0 POB NAPO)
- (SB ?w0 NPED NPOB)
- (SB ?w0 NPOB MOB) (SB ?w0 NPOB SOB)
- (SB ?w0 SOB ASO) (SB ?w0 SOB NASO)
- (SB ?w0 ASO SAG) (SB ?w0 ASO SC)
- (SB ?w0 PD EV) (SB ?w0 PD STV)
- (SB ?w0 EV ACH) (SB ?w0 EV ACC)
- (SB ?w0 STV ST) (SB ?w0 STV PRO)
- (SB ?w0 Q TQ) (SB ?w0 Q PQ) (SB ?w0 Q AQ)
- (SB ?w0 TQ TL)
- (SB ?w0 PQ SL)
- (SB ?w0 AB FACT) (SB ?w0 AB SET) (SB ?w0 AB R)
- (SB ?w0 R TR) (SB ?w0 R PR) (SB ?w0 R AR)
- (SB ?w0 TR T)
- (SB ?w0 PR S))))
- ; (NA18) Existence of sum
- (forall (?w0 ?x ?y)
- (=> (AND (PARTICULAR ?x) (PARTICULAR ?y) (WORLD ?w0))
- (exists (?z)
- (AND (PARTICULAR ?z) (+ ?w0 ?x ?y ?z)))))
- ; (NA19) Existence of sigma
- (forall (?w0 ?f)
- (=> (AND (UNIVERSAL ?f) (WORLD ?w0))
- (exists (?z)
- (AND (PARTICULAR ?z) (sigma ?w0 ?f ?z)))))
- ; (NA20) Existence of sum.t
- (forall (?w0 ?x ?y)
- (=> (AND (PARTICULAR ?x) (PARTICULAR ?y) (WORLD ?w0))
- (exists (?z)
- (AND (PARTICULAR ?z) (+.t ?w0 ?x ?y ?z)))))
- ; (NA21) Existence of sigma.t
- (forall (?w0 ?f)
- (=> (AND (UNIVERSAL ?f) (WORLD ?w0))
- (exists (?z)
- (AND (PARTICULAR ?z) (sigma.t ?w0 ?f ?z)))))
- ; this could be added in the def. of UNIVERSAL
- ;(forall (@f)
- ; (<=> (UNIVERSAL @f)
- ; (exists (?g @h) (AND (UNIVERSAL ?g)
- ; (OR (UNIVERSAL @h) (= @h (listof)))
- ; (= @f (listof ?g @h))))))
- ; this could be added in the def. of PARTICULAR
- ;(forall (@x)
- ; (<=> (PARTICULAR @x)
- ; (exists (?y @z) (AND (PARTICULAR ?y)
- ; (OR (PARTICULAR @z) (= @z (listof)))
- ; (= @x (listof ?y @z))))))
- ;********************************************************
- ;(D1) RG: Rigid Universal
- (defrelation RG (?w0 ?f) :=
- (AND (UNIVERSAL ?f)
- (WORLD ?w0)
- (forall (?w ?x)
- (=> (AND (WLDR ?w0 ?w) (WORLD ?w) (PARTICULAR ?x))
- (=> (?f ?w ?x)
- (forall (?u)
- (=> (AND (WLDR ?w ?u) (WORLD ?u))
- (?f ?u ?x))))))))
- ;(D2) NEP: Non-Empty Universal
- (defrelation NEP (?w0 ?f) :=
- (AND (UNIVERSAL ?f)
- (WORLD ?w0)
- (forall (?w)
- (=> (AND (WLDR ?w0 ?w) (WORLD ?w))
- (exists (?y)
- (AND (PARTICULAR ?y) (?f ?w ?y)))))))
- ;(D3) DJ: Disjoint Universals
- (defrelation DJ (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (forall (?w ?x)
- (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (PARTICULAR ?x))
- (NOT (AND (?f ?w ?x) (?g ?w ?x)))))))
- ;(D4) SB: Subsumption
- (defrelation SB (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (forall (?w ?x)
- (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (PARTICULAR ?x))
- (OR (NOT (?g ?w ?x)) (?f ?w ?x))))))
- ;(D5) EQ: Equal Universals
- (defrelation EQ (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f) (UNIVERSAL ?g) (WORLD ?w0) (SB ?w0 ?f ?g) (SB ?w0 ?g ?f)))
- ;(D6) PSB: Properly Subsuming
- (defrelation PSB (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f) (UNIVERSAL ?g) (WORLD ?w0) (SB ?w0 ?f ?g)
- (NOT (SB ?w0 ?f ?g))))
- ;(D7) L: Leaf Universal
- (defrelation L (?w0 ?f) :=
- (AND (UNIVERSAL ?f)
- (WORLD ?w0)
- (forall (?w ?g)
- (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (UNIVERSAL ?g))
- (OR (NOT (?SB ?w0 ?f ?g)) (EQ ?w0 ?f ?g))))))
- ;(D8) SBL: Leaf Subsumed by
- (defrelation SBL (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f) (UNIVERSAL ?g) (WORLD ?w0) (SB ?w0 ?f ?g) (L ?w0 ?g)))
- ;(D9) PSBL: Leaf Properly Subsumed by
- (defrelation PSBL (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f) (UNIVERSAL ?g) (WORLD ?w0) (PSB ?w0 ?f ?g) (L ?w0 ?g)))
- ;(D10) L__: Leaf in the set X
- (defrelation L.X (?w0 ?f) :=
- (AND (UNIVERSAL ?f)
- (WORLD ?w0)
- (X ?f)
- (forall (?w ?g)
- (=> (AND (WLDR ?w0 ?w) (WORLD ?w) (UNIVERSAL ?g))
- (=> (AND (?SB ?w ?f ?g) (X ?g))
- (EQ ?w ?f ?g))))))
- ;(D11) SBL__
- (defrelation SBL.X (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f) (UNIVERSAL ?g) (WORLD ?w0) (SB ?w0 ?f ?g) (L.X ?w0 ?g)))
- ;(D12) PSBL__
- (defrelation PSBL.X (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f) (UNIVERSAL ?g) (WORLD ?w0) (PSB ?w0 ?f ?g) (L.X ?w0 ?g)))
- ; Definition (D13) is left FOR expressivity. In practice it becomes superfluous
- ; since the user needs TO give a list of the n-tuple satisfying relation PT in
- ; axiom (NA17)
- ;(D13) PT: Partition
- (defrelation PT (?w0 ?f @g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL @g)
- (WORLD ?w0)
- (NOT (item ?f @g))
- (forall (?h ?k)
- (AND (=> (AND (UNIVERSAL ?h)
- (UNIVERSAL ?k)
- (item ?h @g)
- (item ?k @g)
- (/= ?h ?k))
- (DJ ?w0 ?h ?k))
- (forall (?w ?x)
- (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (PARTICULAR ?x))
- (<=> (?f ?w ?x)
- (exists (?h)
- (AND (UNIVERSAL ?h)
- (item ?h @g)
- (?h ?w ?x))))))))))
- ; Mereological Definitions
- ;(D14) PP: Proper Part
- (defrelation PP (?w0 ?x ?y) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (P ?w0 ?x ?y)
- (NOT (P ?w0 ?y ?x))))
- ;(D15) O: Overlap
- (defrelation O (?w0 ?x ?y) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (exists (?z) (AND (PARTICULAR ?z)
- (P ?w0 ?z ?x)
- (P ?w0 ?z ?y)))))
- ;(D16) AT: Atom
- (defrelation AT (?w0 ?x) :=
- (AND (PARTICULAR ?x)
- (WORLD ?w0)
- (NOT (exists (?y) (AND (PARTICULAR ?y)
- (PP ?w0 ?y ?x))))))
- ;(D17) AtP: Atomic Part
- (defrelation AtP (?w0 ?x ?y) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (P ?w0 ?x ?y)
- (AT ?w0 ?x)))
- ;(D18) __ Binary Sum
- (defrelation + (?w0 ?x ?y ?z) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?z)
- (WORLD ?w0)
- (forall (?u)
- (=> (PARTICULAR ?u)
- (<=> (O ?w0 ?u ?z)
- (OR (O ?w0 ?u ?x) (O ?w0 ?u ?y)))))
- (forall (?z1)
- (=> (AND (PARTICULAR ?z1)
- (forall (?u)
- (=> (PARTICULAR ?u)
- (<=> (O ?w0 ?u ?z1)
- (OR (O ?w0 ?u ?x) (O ?w0 ?u ?y))))))
- (= ?z1 ?z)))))
- ;(D19) (general) Sum
- ; Note: the rendition in KIF is weaker than the corresponding definition in
- ;modal FOL; here ?f has TO be one of the universal introduced explicitly.
- ;[A possible way out: use string-variables (@f) TO CODE Boolean
- ;combinations of universals.]
- (defrelation sigma (?w0 ?f ?z) :=
- (AND (PARTICULAR ?z)
- (UNIVERSAL ?f)
- (WORLD ?w0)
- (forall (?y)
- (=> (PARTICULAR ?y)
- (<=> (O ?w0 ?y ?z)
- (exists (?v)
- (AND (PARTICULAR ?v)
- (?f ?w0 ?v)
- (O ?w0 ?y ?v))))))
- (forall (?z1)
- (=> (PARTICULAR ?z1)
- (exists (?y)
- (AND (PARTICULAR ?y)
- (=> (<=> (O ?w0 ?y ?z1)
- (exists (?v)
- (AND (PARTICULAR ?v)
- (?f ?w0 ?v)
- (O ?w0 ?y ?v)))))
- (= ?z1 ?z)))))))
- ;(D20) PP: Temporary Proper Part
- (defrelation PP (?w0 ?x ?y ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (P ?w0 ?x ?y ?t)
- (NOT (P ?w0 ?y ?x ?t))))
- ;(D21) O: Temporary Overlap
- (defrelation O (?w0 ?x ?y ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (exists (?z) (AND (PARTICULAR ?z)
- (P ?w0 ?z ?x ?t)
- (P ?w0 ?z ?y ?t)))))
- ;(D22) AT: Temporary Atom
- (defrelation AT (?w0 ?x ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (NOT (exists (?y)
- (AND (PARTICULAR ?y) (PP ?w0 ?y ?x ?t))))))
- ;(D23) AtP: Temporary Atomic Part
- (defrelation AtP (?w0 ?x ?y ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (P ?w0 ?x ?y ?t)
- (AT ?w0 ?x ?t)))
- ;(D24) Coincidence
- (defrelation =.t (?w0 ?x ?y ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (P ?w0 ?x ?y ?t)
- (P ?w0 ?y ?x ?t)))
- ;(D25) CP: Constant Part
- (defrelation CP (?w0 ?x ?y) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (exists (?t)
- (AND (PARTICULAR ?t) (PRE ?w0 ?y ?t)))
- (forall (?t)
- (=> (AND (PARTICULAR ?t) (PRE ?w0 ?y ?t))
- (P ?w0 ?x ?y ?t)))))
- ;(D26)
- (defrelation +.t (?w0 ?x ?y ?z) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?z)
- (WORLD ?w0)
- (forall (?u ?t)
- (=> (AND (PARTICULAR ?u) (PARTICULAR ?t))
- (<=> (O ?w0 ?u ?z ?t)
- (OR (O ?w0 ?u ?x ?t) (O ?w0 ?u ?y ?t)))))
- (forall (?z1 ?t)
- (=> (AND (PARTICULAR ?z1)
- (PARTICULAR ?t)
- (forall (?u)
- (=> (PARTICULAR ?u)
- (<=> (O ?w0 ?u ?z1 ?t)
- (OR (O ?w0 ?u ?x ?t) (O ?w0 ?u ?y ?t))))))
- (= ?z1 ?z)))))
- ;(D27)
- ; NOTE: this rendition includes only the listed universal, FOR instance,
- ; no Boolean combination of universals is included [see also comment on (D19)]
- (defrelation sigma.t (?w0 ?f ?z) :=
- (AND (PARTICULAR ?z)
- (UNIVERSAL ?f)
- (WORLD ?w0)
- (forall (?y ?t)
- (=> (AND (PARTICULAR ?y) (PARTICULAR ?t))
- (<=> (O ?w0 ?y ?z ?t)
- (exists (?v)
- (AND (PARTICULAR ?v)
- (?f ?w0 ?v)
- (O ?w0 ?y ?v ?t))))))
- (forall (?z1 ?t)
- (=> (AND (PARTICULAR ?z1) (PARTICULAR ?t))
- (exists (?y)
- (AND (PARTICULAR ?y)
- (=> (<=> (O ?w0 ?y ?z1 ?t)
- (exists (?v)
- (AND (PARTICULAR ?v)
- (?f ?w0 ?v)
- (O ?w0 ?y ?v ?t))))
- (= ?z1 ?z))))))))
- ; Quality
- ;(D28) dqt: Direct Quality
- (defrelation dqt (?w0 ?x ?y) :=
- (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (qt ?w0 ?x ?y)
- (NOT (exists (?z)
- (AND (PARTICULAR ?z)
- (qt ?w0 ?x ?z)
- (qt ?w0 ?z ?y))))))
- ;(D29) qt: Quality of typeä
- (defrelation qtf (?w0 ?f ?x ?y) :=
- (AND (UNIVERSAL ?f)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (qt ?w0 ?x ?y)
- (?f ?w0 ?x)
- (SBL.X ?w0 Q ?f)))
- ; Temporal AND Spatial Quale
- ;(D30) ql_T,PD
- (defrelation ql.T.PD (?w0 ?t ?x) :=
- (AND (PARTICULAR ?t)
- (PARTICULAR ?x)
- (WORLD ?w0)
- (PD ?w0 ?x)
- (exists (?z) (AND (PARTICULAR ?z)
- (qtf ?w0 TL ?z ?x)
- (ql ?w0 ?t ?z)))))
- ;(D31) ql_T,ED
- (defrelation ql.T.ED (?w0 ?t ?x) :=
- (AND (PARTICULAR ?t)
- (PARTICULAR ?x)
- (WORLD ?w0)
- (ED ?w0 ?x)
- (forall (?u)
- (=> (PARTICULAR ?u)
- (<=> (O ?w0 ?u ?t)
- (exists (?v ?y)
- (AND (PARTICULAR ?v)
- (PARTICULAR ?y)
- (PC ?w0 ?x ?y ?v)
- (O ?w0 ?u ?v))))))
- (forall (?t1)
- (=> (PARTICULAR ?t1)
- (exists (?u)
- (AND (PARTICULAR ?u)
- (=> (<=> (O ?w0 ?u ?t1)
- (exists (?v ?y)
- (AND (PARTICULAR ?v)
- (PARTICULAR ?y)
- (PC ?w0 ?x ?y ?v)
- (O ?w0 ?u ?v))))
- (= ?t1 ?t))))))))
- ;(D32) ql_T,TQ
- (defrelation ql.T.TQ (?w0 ?t ?x) :=
- (AND (PARTICULAR ?t)
- (PARTICULAR ?x)
- (WORLD ?w0)
- (TQ ?w0 ?x)
- (exists (?z) (AND (PARTICULAR ?z)
- (qt ?w0 ?x ?z)
- (ql.T.PD ?w0 ?t ?z)))))
- ;(D33) ql_T,PQ_or_AQ
- (defrelation ql.T.PQAQ (?w0 ?t ?x) :=
- (AND (PARTICULAR ?t)
- (PARTICULAR ?x)
- (WORLD ?w0)
- (OR (PQ ?w0 ?x) (AQ ?w0 ?x))
- (exists (?z) (AND (PARTICULAR ?z)
- (qt ?w0 ?x ?z)
- (ql.T.ED ?w0 ?t ?z)))))
- ;(D34) ql_T,Q
- (defrelation ql.T.Q (?w0 ?t ?x) :=
- (AND (PARTICULAR ?t)
- (PARTICULAR ?x)
- (WORLD ?w0)
- (OR (ql.T.TQ ?w0 ?t ?x)
- (ql.T.PQAQ ?w0 ?t ?x))))
- ;(D35) ql_T: Temporal Quale
- (defrelation ql.T (?w0 ?t ?x) :=
- (AND (PARTICULAR ?t)
- (PARTICULAR ?x)
- (WORLD ?w0)
- (OR (ql.T.ED ?w0 ?t ?x)
- (ql.T.PD ?w0 ?t ?x)
- (ql.T.Q ?w0 ?t ?x))))
- ;(D36) ql_S,PED
- (defrelation ql.S.PED (?w0 ?s ?x ?t) :=
- (AND (PARTICULAR ?s)
- (PARTICULAR ?x)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (PED ?w0 ?x)
- (exists (?z) (AND (PARTICULAR ?z)
- (qtf ?w0 SL ?z ?x)
- (ql ?w0 ?s ?z ?t)))))
- ;(D37) ql_S,PQ
- (defrelation ql.S.PQ (?s ?x ?t) :=
- (AND (PARTICULAR ?s)
- (PARTICULAR ?x)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (PQ ?w0 ?x)
- (exists (?z) (AND (PARTICULAR ?z)
- (qt ?w0 ?x ?z)
- (ql.S.PED ?w0 ?s ?z ?t)))))
- ;(D38) ql_S,PD
- (defrelation ql.S.PD (?w0 ?s ?x ?t) :=
- (AND (PARTICULAR ?s)
- (PARTICULAR ?x)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (PD ?w0 ?x)
- (exists (?z) (AND (PARTICULAR ?z)
- (mppc ?w0 ?z ?x)
- (ql.S.PED ?w0 ?s ?z ?t)))))
- ;(D39) ql_S: Spatial Quale
- (defrelation ql.S (?w0 ?s ?x ?t) :=
- (AND (PARTICULAR ?s)
- (PARTICULAR ?x)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (OR (ql.S.PED ?w0 ?s ?x ?t)
- (ql.S.PQ ?w0 ?s ?x ?t)
- (ql.S.PD ?w0 ?s ?x ?t))))
- ;Being present
- ;(D40) PRE: Being Present AT
- (defrelation PRE (?w0 ?x ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (exists (?u) (AND (PARTICULAR ?u)
- (ql.T ?w0 ?u ?x)
- (P ?w0 ?t ?u)))))
- ;(D41) PRE: Being Present in AT
- (defrelation PRE (?w0 ?x ?s ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?s)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (PRE ?w0 ?x ?t)
- (exists (?u) (AND (PARTICULAR ?u)
- (ql.S ?w0 ?u ?x ?t)
- (P ?w0 ?s ?u)))))
- ; Inclusion AND Coincidence
- ;(D42) Temporal Inclusion
- (defrelation incl.T (?w0 ?x ?y) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (exists (?t ?u) (AND (PARTICULAR ?t)
- (PARTICULAR ?u)
- (ql.T ?w0 ?t ?x)
- (ql.T ?w0 ?u ?y)
- (P ?w0 ?t ?u)))))
- ;(D43) Proper Temporal Inclusion
- (defrelation sincl.T (?w0 ?x ?y) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (exists (?t ?u) (AND (PARTICULAR ?t)
- (PARTICULAR ?u)
- (ql.T ?w0 ?t ?x)
- (ql.T ?w0 ?u ?y)
- (PP ?w0 ?t ?u)))))
- ;(D44) Temporary Spatial Inclusion
- (defrelation incl.S.t (?w0 ?x ?y ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (exists (?s ?r) (AND (PARTICULAR ?s)
- (PARTICULAR ?r)
- (ql.S ?w0 ?s ?x ?t)
- (ql.S ?w0 ?r ?y ?t)
- (P ?w0 ?s ?r)))))
- ;(D45) Temp. Proper Sp. Inclusion
- (defrelation sincl.S.t (?w0 ?x ?y ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (exists (?s ?r) (AND (PARTICULAR ?s)
- (PARTICULAR ?r)
- (ql.S ?w0 ?s ?x ?t)
- (ql.S ?w0 ?r ?y ?t)
- (PP ?w0 ?s ?r)))))
- ;(D46) Spatio-temporal Inclusion
- (defrelation incl.S.T (?w0 ?x ?y) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (exists (?t) (AND (PARTICULAR ?t) (PRE ?w0 ?x ?t)))
- (forall (?t) (=> (AND (PARTICULAR ?t) (PRE ?w0 ?x ?t))
- (incl.S.t ?w0 ?x ?y ?t)))))
- ;(D47) Spatio-temp. Incl. during
- (defrelation incl.S.T.t (?w0 ?x ?y ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (PRE ?w0 ?x ?t)
- (forall (?u) (=> (AND (PARTICULAR ?u) (AtP ?w0 ?u ?t))
- (incl.S.t ?w0 ?x ?y ?u)))))
- ;(D48) Temporal Coincidence
- (defrelation ~.T (?w0 ?x ?y) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (incl.T ?w0 ?x ?y)
- (incl.T ?w0 ?y ?x)))
- ;(D49) Temporary Spatial Coincidence
- (defrelation ~.S.t (?w0 ?x ?y ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (incl.S.t ?w0 ?x ?y ?t)
- (incl.S.t ?w0 ?y ?x ?t)))
- ;(D50) Spatio-temporal Coincidence
- (defrelation ~.S.T (?w0 ?x ?y) :=
- (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (incl.S.T ?w0 ?x ?y)
- (incl.S.T ?w0 ?y ?x)))
- ;(D51) Spatio-temp. Coincidence during
- (defrelation ~.S.T.t (?w0 ?x ?y ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (PRE ?w0 ?x ?t)
- (forall (?u) (=> (AND (PARTICULAR ?u) (AtP ?w0 ?u ?t))
- (~.S.t ?w0 ?x ?y ?u)))))
- ;(D52) O_T: Temporal Overlap
- (defrelation O.T (?w0 ?x ?y) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (exists (?t ?u) (AND (PARTICULAR ?t)
- (PARTICULAR ?u)
- (ql.T ?w0 ?t ?x)
- (ql.T ?w0 ?u ?y)
- (O ?w0 ?t ?u)))))
- ;(D53) O_S,t: Temporary Spatial Overlap
- (defrelation O.S.t (?x ?y ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (exists (?s ?r) (AND (PARTICULAR ?s)
- (PARTICULAR ?r)
- (ql.S ?w0 ?s ?x ?t)
- (ql.S ?w0 ?r ?y ?t)
- (O ?w0 ?s ?r)))))
- ; Perdurant
- ;(D54) P_T: Temporal Part
- (defrelation P.T (?w0 ?x ?y) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (PD ?w0 ?x)
- (P ?w0 ?x ?y)
- (forall (?z) (=> (AND (PARTICULAR ?z)
- (P ?w0 ?z ?y)
- (incl.T ?w0 ?z ?x))
- (P ?w0 ?z ?x)))))
- ;(D55) P_S: Spatial Part
- (defrelation P.S (?w0 ?x ?y) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (PD ?w0 ?x)
- (P ?w0 ?x ?y)
- (~.T ?w0 ?x ?y)))
- ;(D56) NEP_S: Strongly Non-Empty
- (defrelation NEP.S (?w0 ?f) :=
- (AND (UNIVERSAL ?f)
- (WORLD ?w0)
- (SB ?w0 PD ?f)
- (forall (?w) (=> (AND (WLDR ?w0 ?w) (WORLD ?w))
- (exists (?x ?y)
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (?f ?w ?x)
- (?f ?w ?y)
- (NOT (P ?w ?x ?y))
- (NOT (P ?w ?y ?x))))))))
- ;(D57) CM: Cumulative
- (defrelation CM (?w0 ?f) :=
- (AND (UNIVERSAL ?f)
- (WORLD ?w0)
- (SB ?w0 PD ?f)
- (forall (?w ?x ?y ?z)
- (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?z)
- (+ ?w ?x ?y ?z)
- (?f ?w ?x)
- (?f ?w ?y))
- (?f ?w ?z)))))
- ;(D58) CMó: Anti-Cumulative
- (defrelation CM~ (?w0 ?f) :=
- (AND (UNIVERSAL ?f)
- (WORLD ?w0)
- (SB ?w0 PD ?f)
- (forall (?w ?x ?y ?z)
- (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?z)
- (+ ?w ?x ?y ?z)
- (?f ?w ?x)
- (?f ?w ?y)
- (NOT (P ?w ?x ?y))
- (NOT (P ?w ?y ?x)))
- (NOT (?f ?w ?z))))))
- ;(D59) HOM: Homeomerous
- (defrelation HOM (?w0 ?f) :=
- (AND (UNIVERSAL ?f)
- (WORLD ?w0)
- (SB ?w0 PD ?f)
- (forall (?w ?x ?y) (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (?f ?w ?x)
- (P.T ?w ?y ?x))
- (?f ?w ?y)))))
- ;(D60) HOMó: Anti-Homeom.
- (defrelation HOM~ (?w0 ?f) :=
- (AND (UNIVERSAL ?f)
- (WORLD ?w0)
- (SB ?w0 PD ?f)
- (forall (?w ?x)
- (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (PARTICULAR ?x)
- (?f ?w ?x))
- (exists (?y)
- (AND (PARTICULAR ?y)
- (P.T ?w ?y ?x)
- (NOT (?f ?w ?y))))))))
- ;(D61) AT: Atomic
- (defrelation AT (?w0 ?f) :=
- (AND (UNIVERSAL ?f)
- (WORLD ?w0)
- (SB ?w0 PD ?f)
- (forall (?w ?x) (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (PARTICULAR ?x)
- (?f ?w ?x))
- (AT ?w ?x)))))
- ;(D62) ATó: Anti-Atomic
- (defrelation AT~ (?w0 ?f) :=
- (AND (UNIVERSAL ?f)
- (WORLD ?w0)
- (SB ?w0 PD ?f)
- (forall (?w ?x) (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (PARTICULAR ?x)
- (?f ?w ?x))
- (NOT (AT ?w ?x))))))
- ;Participation
- ;(D63) PC_C: Constant Participation
- (defrelation PC.C (?w0 ?x ?y) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (exists (?t) (AND (PARTICULAR ?t) (PRE ?w0 ?y ?t)))
- (forall (?t) (=> (AND (PARTICULAR ?t)
- (PRE ?w0 ?y ?t))
- (PC ?w0 ?x ?y ?t)))))
- ;(D64) PC_T: Temporary Total Particip.
- (defrelation PC.T (?w0 ?x ?y ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (PD ?w0 ?y)
- (forall (?z)
- (=> (AND (PARTICULAR ?z)
- (P ?w0 ?z ?y)
- (PRE ?w0 ?z ?t))
- (PC ?w0 ?x ?z ?t)))))
- ;(D65) PC_T: Total Participation
- (defrelation PC.T (?w0 ?x ?y) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (exists (?t) (AND (PARTICULAR ?t)
- (ql.T ?w0 ?t ?y)
- (PC.T ?w0 ?x ?y ?t)))))
- ;(D66) mpc: Maximal Participant
- (defrelation mpc (?w0 ?x ?y) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (forall (?z ?t)
- (=> (AND (PARTICULAR ?z) (PARTICULAR ?t))
- (<=> (O ?w0 ?z ?x ?t)
- (exists (?v)
- (AND (PARTICULAR ?v)
- (PC.T ?w0 ?v ?y ?t)
- (O ?w0 ?z ?v ?t))))))
- (forall (?z ?x1 ?t)
- (=> (AND (PARTICULAR ?z)
- (PARTICULAR ?x1)
- (PARTICULAR ?t)
- (<=> (O ?w0 ?z ?x1 ?t)
- (exists (?v)
- (AND (PARTICULAR ?v)
- (PC.T ?w0 ?v ?y ?t)
- (O ?w0 ?z ?v ?t)))))
- (= ?x1 ?x)))))
- ;(D67) mppc: Maximal Physical Participant
- (defrelation mppc (?w0 ?x ?y) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (forall (?z ?t)
- (=> (AND (PARTICULAR ?z) (PARTICULAR ?t))
- (<=> (O ?w0 ?z ?x ?t)
- (exists (?v)
- (AND (PARTICULAR ?v)
- (PC.T ?w0 ?v ?y ?t)
- (PED ?w0 ?z)
- (O ?w0 ?z ?v ?t))))))
- (forall (?z ?x1 ?t)
- (=> (AND (PARTICULAR ?z)
- (PARTICULAR ?x1)
- (PARTICULAR ?t)
- (<=> (O ?w0 ?z ?x1 ?t)
- (exists (?v)
- (AND (PARTICULAR ?v)
- (PC.T ?w0 ?v ?y ?t)
- (PED ?w0 ?z)
- (O ?w0 ?z ?v ?t)))))
- (= ?x1 ?x)))))
- ;(D68) lf: Life
- (defrelation lf (?w0 ?x ?y) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (forall (?z)
- (=> (PARTICULAR ?z)
- (<=> (O ?w0 ?z ?x)
- (exists (?v)
- (AND (PARTICULAR ?v)
- (PC.T ?w0 ?y ?v)
- (O ?w0 ?z ?v))))))
- (forall (?z ?u)
- (=> (AND (PARTICULAR ?z) (PARTICULAR ?u)
- (<=> (O ?w0 ?z ?u)
- (exists (?v)
- (AND (PARTICULAR ?v)
- (PC.T ?w0 ?y ?v)
- (O ?w0 ?z ?v)))))
- (= ?u ?x)))))
- ; Dependence
- ;(D69) SD: Specific Constant Dep.
- (defrelation SD (?w0 ?x ?y) :=
- (OR (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (WORLD ?w0)
- (forall (?w)
- (=> (AND (WLDR ?w0 ?w) (WORLD ?w))
- (AND (exists (?t)
- (AND (PARTICULAR ?t) (PRE ?w ?x ?t)))
- (forall (?t)
- (=> (AND (PARTICULAR ?t) (PRE ?w ?x ?t))
- (PRE ?w ?y ?t)))))))
- (AND (UNIVERSAL ?x)
- (UNIVERSAL ?y)
- (WORLD ?w0)
- (DJ ?w0 ?x ?y)
- (forall (?w ?x1)
- (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (PARTICULAR ?x1)
- (?x ?w ?x1))
- (exists (?y1) (AND (PARTICULAR ?y1)
- (?y ?w ?y1)
- (SD ?w ?x1 ?y1))))))))
- ;(D70) SD: Specific CONST. Dep.
- ;included in def (D69)
- ;(D71) GD: Generic CONST. Dep.
- (defrelation GD (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (DJ ?w0 ?f ?g)
- (forall (?w ?x ?t)
- (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (PARTICULAR ?x)
- (PARTICULAR ?t)
- (?f ?w ?x))
- (AND (exists (?t1)
- (AND (PARTICULAR ?t1) (PRE ?w ?x ?t1)))
- (=> (AND (AT ?w ?t) (PRE ?w ?x ?t))
- (exists (?y)
- (AND (PARTICULAR ?y)
- (?g ?w ?y)
- (PRE ?w ?y ?t)))))))))
- ;(D72) D: Constant Dependence
- (defrelation D (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (OR (SD ?w0 ?f ?g) (GD ?w0 ?f ?g))))
- ;(D73) OD: One-sided Constant Dependence
- (defrelation OD (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (D ?w0 ?f ?g)
- (NOT (D ?w0 ?g ?f))))
- ;(D74) OSD: One-sided Specific Constant Dependence
- (defrelation OSD (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (SD ?w0 ?f ?g)
- (NOT (D ?w0 ?g ?f))))
- ;(D75) OGD: One-sided Generic Constant Dependence
- (defrelation OGD (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (GD ?w0 ?f ?g)
- (NOT (D ?w0 ?g ?f))))
- ;(D76) MSD: Mutual Specific Constant Dependence
- (defrelation MSD (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (SD ?w0 ?f ?g)
- (SD ?w0 ?g ?f)))
- ;(D77) MGD: Mutual Generic Constant Dependence
- (defrelation MGD (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (GD ?w0 ?f ?g)
- (GD ?w0 ?g ?f)))
- ; Spatial Dependence
- ;(D78) SD_S: Specific Spatial Dependence
- (defrelation SD.S (?w0 ?x ?y) :=
- (OR (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (forall (?w)
- (=> (AND (WLDR ?w0 ?w) (WORLD ?w))
- (AND (exists (?t ?s)
- (AND (PARTICULAR ?t)
- (PARTICULAR ?s)
- (PRE ?w ?x ?s ?t)))
- (forall (?t ?s)
- (=> (AND (PARTICULAR ?t)
- (PARTICULAR ?s)
- (PRE ?w ?x ?s ?t))
- (PRE ?w ?y ?s ?t)))))))
- (AND (WORLD ?w0)
- (UNIVERSAL ?x)
- (UNIVERSAL ?y)
- (DJ ?w0 ?x ?y)
- (forall (?w ?x1)
- (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (PARTICULAR ?x1)
- (?x ?w ?x))
- (exists (?y1)
- (AND (PARTICULAR ?y1)
- (?y ?w ?y1)
- (SD.S ?w ?x1 ?y1))))))))
- ;(D79) PSD_S: Partial Specific Spatial Dependence
- (defrelation PSD.S (?w0 ?x ?y) :=
- (OR (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (forall (?w)
- (=> (AND (WLDR ?w0 ?w) (WORLD ?w))
- (AND (exists (?t ?s)
- (AND (PARTICULAR ?t)
- (PARTICULAR ?s)
- (PRE ?w ?x ?s ?t)))
- (forall (?t ?s)
- (=> (AND (PARTICULAR ?t)
- (PARTICULAR ?s)
- (PRE ?w ?x ?s ?t))
- (exists (?r)
- (AND (PARTICULAR ?r)
- (PP ?w ?r ?s)
- (PRE ?w ?y ?r ?t)))))))))
- (AND (WORLD ?w0)
- (UNIVERSAL ?x)
- (UNIVERSAL ?y)
- (DJ ?w0 ?x ?y)
- (forall (?w ?x1)
- (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (PARTICULAR ?x1)
- (?x ?w ?x1))
- (exists (?y1)
- (AND (PARTICULAR ?y1)
- (?y ?w ?y1)
- (PSD.S ?w ?x1 ?y1))))))))
- ;(D80) P-1SD_S: INVERSE Partial Specific Spatial Dependence
- (defrelation P1SD.S (?w0 ?x ?y) :=
- (OR (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (forall (?w)
- (=> (AND (WLDR ?w0 ?w) (WORLD ?w))
- (AND (exists (?t ?s)
- (AND (PARTICULAR ?t)
- (PARTICULAR ?s)
- (PRE ?w ?x ?s ?t)))
- (forall (?t ?s)
- (=> (AND (PARTICULAR ?t)
- (PARTICULAR ?s)
- (PRE ?w ?x ?s ?t))
- (exists (?r)
- (AND (PARTICULAR ?r)
- (PP ?w ?s ?r)
- (PRE ?w ?y ?r ?t)))))))))
- (AND (WORLD ?w0)
- (UNIVERSAL ?x)
- (UNIVERSAL ?y)
- (DJ ?w0 ?x ?y)
- (forall (?w ?x1)
- (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (PARTICULAR ?x1)
- (?x ?w ?x1))
- (exists (?y1)
- (AND (PARTICULAR ?y1)
- (?y ?w ?y1)
- (P1SD.S ?w ?x1 ?y1))))))))
- ;(D81) SD_S
- ;included in def (D78)
- ;(D82) PSD_S
- ;included in def (D79)
- ;(D83) P-1SD_S
- ;included in def (D80)
- ;(D84) GD_S: Generic Spatial Dependence
- (defrelation GD.S (?w0 ?f ?g) :=
- (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (DJ ?w0 ?f ?g)
- (forall (?w ?x ?s ?t)
- (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (PARTICULAR ?x)
- (PARTICULAR ?t)
- (PARTICULAR ?s)
- (?f ?w ?x))
- (AND (exists (?t1 ?s1)
- (AND (PARTICULAR ?t1)
- (PARTICULAR ?s1)
- (PRE ?w ?x ?s1 ?t1)))
- (=> (AND (AT ?w ?t) (PRE ?w ?x ?s ?t))
- (exists (?y)
- (AND (PARTICULAR ?y)
- (?g ?w ?y)
- (PRE ?w ?y ?s ?t)))))))))
- ;(D85) PGD_S: Partial Generic Spatial Dependence
- (defrelation PGD.S (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (DJ ?w0 ?f ?g)
- (forall (?w ?x ?s ?t)
- (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w))
- (PARTICULAR ?x)
- (PARTICULAR ?s)
- (PARTICULAR ?t)
- (?f ?w ?x))
- (AND (exists (?s1 ?t1)
- (AND (PRE ?w ?x ?s1 ?t1)
- (PARTICULAR ?s1)
- (PARTICULAR ?t1))
- (=> (AND (AT ?w ?t) (PRE ?w ?x ?s ?t))
- (exists (?y ?u)
- (AND (PARTICULAR ?y)
- (PARTICULAR ?u)
- (?g ?w ?y)
- (PP ?w ?u ?s)
- (PRE ?w ?y ?u ?t)))))))))
- ;(D86) P-1GD_S: INVERSE Partial Generic Spatial Dependence
- (defrelation P1GD.S (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (DJ ?w0 ?f ?g)
- (forall (?w ?x ?s ?t)
- (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w))
- (PARTICULAR ?x)
- (PARTICULAR ?s)
- (PARTICULAR ?t)
- (?f ?w ?x))
- (AND (exists (?t1 ?s1)
- (AND (PARTICULAR ?t1)
- (PARTICULAR ?s1)
- (PRE ?w ?x ?s1 ?t1))
- (=> (AND (AT ?w ?t) (PRE ?w ?x ?t))
- (exists (?y ?u)
- (AND (PARTICULAR ?y)
- (PARTICULAR ?u)
- (?g ?w ?y)
- (PP ?w ?s ?u)
- (PRE ?w ?y ?u ?t)))))))))
- ;(D87) DGD_S: Direct Generic Spatial Dependence
- (defrelation DGD.S (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (GD.S ?w0 ?f ?g)
- (NOT (exists (?h) (AND (UNIVERSAL ?h)
- (GD.S ?w0 ?f ?h)
- (GD.S ?w0 ?h ?g))))))
- ;(D88) Sdt_S: Temporary Specific Spatial Dependence
- (defrelation SDt.S (?w0 ?x ?y ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (SD.S ?w0 ?x ?y)
- (PRE ?w0 ?x ?t)))
- ;(D89) GDt_S: Temp. Gen. Sp. Dep.
- (defrelation GDt.S (?w0 ?x ?y ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (exists (?f ?g) (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (?f ?w0 ?x)
- (?g ?w0 ?y)
- (GD.S ?w0 ?f ?g)
- (~.S.t ?w0 ?x ?y ?t)))))
- ;(D90) DGDt_S: Temp. Direct Sp. Dep.
- (defrelation DGDt.S (?w0 ?x ?y ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (exists (?f ?g) (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (?f ?w0 ?x)
- (?g ?w0 ?y)
- (DGD.S ?w0 ?f ?g)
- (~.S.t ?w0 ?x ?y ?t)))))
- ;(D91) OSD_S: One-sided Specific Spatial Dependence
- (defrelation OSD.S (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (SD.S ?w0 ?f ?g)
- (NOT (D ?w0 ?g ?f))))
- ;(D92) OGD_S: One-sided Generic Spatial Dependence
- (defrelation OGD.S (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (GD.S ?w0 ?f ?g)
- (NOT (D ?w0 ?g ?f))))
- ;(D93) MSD_S: Mutual Specific Spatial Dependence
- (defrelation MSD.S (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (SD.S ?w0 ?f ?g)
- (SD.S ?w0 ?g ?f)))
- ;(D94) MGD_S: Mutual Generic Spatial Dependence
- (defrelation MGD.S (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (GD.S ?w0 ?f ?g)
- (GD.S ?w0 ?g ?f)))
- ; Constitution
- ;(D95) DK: Direct Constitution
- (defrelation DK (?w0 ?x ?y ?t) :=
- (AND (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (WORLD ?w0)
- (K ?w0 ?x ?y ?t)
- (NOT (exists (?z) (AND (PARTICULAR ?z)
- (K ?w0 ?x ?z ?t)
- (K ?w0 ?z ?y ?t))))))
- ;(D96) SK: Constantly Specifically Constituted by
- (defrelation SK (?w0 ?x ?y) :=
- (OR (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (forall (?w)
- (=> (AND (WLDR ?w0 ?w) (WORLD ?w))
- (AND (exists (?t)
- (AND (PARTICULAR ?t) (PRE ?w ?x ?t))
- (forall (?t)
- (=> (AND (PARTICULAR ?t)
- (PRE ?w ?x ?t))
- (K ?w ?y ?x ?t))))))))
- (AND (UNIVERSAL ?x)
- (UNIVERSAL ?y)
- (WORLD ?w0)
- (DJ ?w0 ?f ?g)
- (forall (?w ?x1)
- (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (PARTICULAR ?x1)
- (?f ?w ?x1))
- (exists (?y1)
- (AND (PARTICULAR ?y1)
- (?y ?w ?y1)
- (SK ?w ?x1 ?y1))))))))
- ;(D97) SK: Constantly Specifically Constituted by
- ;included in def (D96)
- ;(D98) GK: Constantly Generically Constituted by
- (defrelation GK (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (DJ ?w0 ?f ?g)
- (forall (?w ?x ?t)
- (=> (AND (WLDR ?w0 ?w)
- (WORLD ?w)
- (PARTICULAR ?x)
- (PARTICULAR ?t)
- (?f ?w ?x))
- (AND (exists (?t1)
- (AND (PARTICULAR ?t1) (PRE ?w ?x ?t1)))
- (=> (AND (AT ?w ?t) (PRE ?w ?x ?t))
- (exists (?y)
- (AND (PARTICULAR ?y)
- (?g ?w ?y)
- (K ?w ?y ?x ?t)))))))))
- ;(D99) K__Constituted by
- (defrelation K (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (OR (SK ?w0 ?f ?g) (GK ?w0 ?f ?g))))
- ;(D100) OSK: One-sided Cons. Specif. CONST. by
- (defrelation OSK (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (SK ?w0 ?f ?g)
- (NOT (K ?w0 ?g ?f))))
- ;(D101) OGK: One-sided Cons. Generic. CONST. by
- (defrelation OGK (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (GK ?w0 ?f ?g)
- (NOT (K ?w0 ?g ?f))))
- ;(D102) MSK: Mutual Specific Constitution
- (defrelation MSK (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (SK ?w0 ?f ?g)
- (SK ?w0 ?g ?f)))
- ;(D103) MGK: Mutual Generic Constitution
- (defrelation MSK (?w0 ?f ?g) :=
- (AND (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (WORLD ?w0)
- (GK ?w0 ?f ?g)
- (GK ?w0 ?g ?f)))
- ; Characterization of functions AND relations
- ; Parthood
- ; Argument Restrictions
- ;(A1)
- (forall (?w0 ?x ?y)
- (=> (AND (P ?w0 ?x ?y)
- (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y))
- (AND (OR (AB ?w0 ?x) (PD ?w0 ?x))
- (OR (AB ?w0 ?y) (PD ?w0 ?y)))))
- ;(A2)
- (forall (?w0 ?x ?y)
- (=> (AND (P ?w0 ?x ?y)
- (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y))
- (<=> (PD ?w0 ?x) (PD ?w0 ?y))))
- ;(A3)
- (forall (?w0 ?x ?y)
- (=> (AND (P ?w0 ?x ?y)
- (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y))
- (<=> (AB ?w0 ?x)
- (AB ?w0 ?y))))
- ;(A4)
- (forall (?w0 ?x ?y ?f)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (UNIVERSAL ?f)
- (P ?w0 ?x ?y)
- (SB ?w0 R ?f)
- (X ?f))
- (<=> (?f ?w0 ?x) (?f ?w0 ?y))))
- ; Ground Axioms
- ;(A5)
- (forall (?w0 ?x)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (OR (AB ?w0 ?x) (PD ?w0 ?x)))
- (P ?w0 ?x ?x)))
- ;(A6)
- (forall (?w0 ?x ?y)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (P ?w0 ?x ?y)
- (P ?w0 ?y ?x))
- (= ?x ?y)))
- ;(A7)
- (forall (?w0 ?x ?y ?z)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?z)
- (P ?w0 ?x ?y)
- (P ?w0 ?y ?z))
- (P ?w0 ?x ?z)))
- ;(A8)
- (forall (?w0 ?x ?y)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (OR (AB ?w0 ?x) (PD ?w0 ?x))
- (NOT (P ?w0 ?x ?y)))
- (exists (?z)
- (AND (PARTICULAR ?x)
- (P ?w0 ?z ?x)
- (NOT (O ?w0 ?z ?y))))))
- ;(A9)
- ; Note: this version in KIF consider only the universal explicitly listed
- ;[see comment on (D19)]
- (forall (?w0 ?f)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (exists (?x)
- (AND (PARTICULAR ?x) (?f ?w0 ?x)))
- (OR (forall (?x)
- (=> (AND (PARTICULAR ?x) (?f ?w0 ?x))
- (AB ?w0 ?x)))
- (forall (?x)
- (=> (AND (PARTICULAR ?x) (?f ?w0 ?x))
- (PD ?w0 ?x)))))
- (exists (?y)
- (AND (PARTICULAR ?y) (sigma ?w0 ?f ?y)))))
- ; Temporary Parthood
- ; Argument restrictions
- ;(A10)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (P ?w0 ?x ?y ?t))
- (AND (ED ?w0 ?x) (ED ?w0 ?y) (T ?w0 ?t))))
- ;(A11)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (P ?w0 ?x ?y ?t))
- (<=> (PED ?w0 ?x) (PED ?w0 ?y))))
- ;(A12)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (P ?w0 ?x ?y ?t))
- (<=> (NPED ?w0 ?x) (NPED ?w0 ?y))))
- ; Ground Axioms
- ;(A13)
- (forall (?w0 ?x ?y ?z ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?z)
- (PARTICULAR ?t)
- (P ?w0 ?x ?y ?t)
- (P ?w0 ?y ?z ?t))
- (P ?w0 ?x ?z ?t)))
- ;(A14)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (ED ?w0 ?x)
- (ED ?w0 ?y)
- (PRE ?w0 ?x ?t)
- (PRE ?w0 ?y ?t)
- (NOT (P ?w0 ?x ?y ?t)))
- (exists (?z)
- (AND (PARTICULAR ?z)
- (P ?w0 ?z ?x ?t)
- (NOT (O ?w0 ?z ?y ?t))))))
- ;(A15)
- ;[see comment on (D19)]
- (forall (?w0 ?f)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (exists (?x)
- (AND (PARTICULAR ?x) (?f ?w0 ?x)))
- (forall (?x)
- (=> (AND (PARTICULAR ?x) (?f ?w0 ?x))
- (ED ?w0 ?x))))
- (exists (?y)
- (AND (PARTICULAR ?y) (sigma.t ?w0 ?f ?y)))))
- ; Links With Other Primitives
- ;(A16)
- (forall (?w0 ?x ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?t)
- (ED ?w0 ?x)
- (PRE ?w0 ?x ?t))
- (P ?w0 ?x ?x ?t)))
- ;(A17)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (P ?w0 ?x ?y ?t))
- (AND (PRE ?w0 ?x ?t) (PRE ?w0 ?y ?t))))
- ;(A18)
- (forall (?w0 ?x ?y ?t ?u)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (PARTICULAR ?u)
- (P ?w0 ?x ?y ?t)
- (P ?w0 ?u ?t))
- (P ?w0 ?x ?y ?u)))
- ;(A19)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (PED ?w0 ?x)
- (P ?w0 ?x ?y ?t))
- (incl.S.t ?w0 ?x ?y ?t)))
- ; Constitution
- ; Argument restrictions
- ;(A20)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (K ?w0 ?x ?y ?t))
- (AND (OR (ED ?w0 ?x) (PD ?w0 ?x))
- (OR (ED ?w0 ?y) (PD ?w0 ?y))
- (T ?w0 ?t))))
- ;(A21)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (K ?w0 ?x ?y ?t))
- (<=> (PED ?w0 ?x) (PED ?w0 ?y))))
- ;(A22)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (K ?w0 ?x ?y ?t))
- (<=> (NPED ?w0 ?x) (NPED ?w0 ?y))))
- ;(A23)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (K ?w0 ?x ?y ?t))
- (<=> (PD ?w0 ?x) (PD ?w0 ?y))))
- ; Ground Axioms
- ;(A24)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (K ?w0 ?x ?y ?t))
- (NOT (K ?w0 ?y ?x ?t))))
- ;(A25)
- (forall (?w0 ?x ?y ?z ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?z)
- (PARTICULAR ?t)
- (K ?w0 ?x ?y ?t)
- (K ?w0 ?y ?z ?t))
- (K ?w0 ?x ?z ?t)))
- ; Links with other Primitives
- ;(A26)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (K ?w0 ?x ?y ?t))
- (AND (PRE ?w0 ?x ?t) (PRE ?w0 ?y ?t))))
- ;(A27)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t))
- (<=> (K ?w0 ?x ?y ?t)
- (forall (?u)
- (=> (AND (PARTICULAR ?u) (P ?w0 ?u ?t))
- (K ?w0 ?x ?y ?u))))))
- ;(A28)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (PED ?w0 ?x)
- (K ?w0 ?x ?y ?t))
- (~.S.t ?w0 ?x ?y ?t)))
- ;(A29)
- (forall (?w0 ?x ?y ?y1 ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?y1)
- (PARTICULAR ?t)
- (K ?w0 ?x ?y ?t)
- (P ?w0 ?y1 ?y ?t))
- (exists (?x1)
- (AND (PARTICULAR ?x1)
- (P ?w0 ?x1 ?x ?t)
- (K ?w0 ?x1 ?y1 ?t)))))
- ; Links between Categories
- ;(A30)
- (forall (?w0) (=> (WORLD ?w0) (GK ?w0 NAPO M)))
- ;(A31)
- (forall (?w0) (=> (WORLD ?w0) (GK ?w0 APO NAPO)))
- ;(A32)
- (forall (?w0) (=> (WORLD ?w0) (GK ?w0 SC SAG)))
- ; Participation
- ; Argument restrictions
- ;(A33)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (PC ?w0 ?x ?y ?t))
- (AND (ED ?w0 ?x) (PD ?w0 ?y) (T ?w0 ?t))))
- ; Existential Axioms
- ;(a34)
- (forall (?w0 ?x ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?t)
- (PD ?w0 ?x)
- (PRE ?w0 ?x ?t))
- (exists (?y)
- (AND (PARTICULAR ?y) (PC ?w0 ?y ?x ?t)))))
- ;(a35)
- (forall (?w0 ?x)
- (=> (AND (WORLD ?w0) (PARTICULAR ?x) (ED ?w0 ?x))
- (exists (?y ?t)
- (AND (PARTICULAR ?y) (PARTICULAR ?t) (PC ?w0 ?x ?y ?t)))))
- ; Links with other Primitives
- ;(a36)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (PC ?w0 ?x ?y ?t))
- (AND (PRE ?w0 ?x ?t) (PRE ?w0 ?y ?t))))
- ;(a37)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t))
- (<=> (PC ?w0 ?x ?y ?t)
- (forall (?u)
- (=> (AND (PARTICULAR ?u) (P ?w0 ?u ?t))
- (PC ?w0 ?x ?y ?u))))))
- ; Quality
- ; Argument restrictions:
- ;(a38)
- (forall (?w0 ?x ?y)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (qt ?w0 ?x ?y))
- (AND (Q ?w0 ?x)
- (OR (Q ?w0 ?y) (ED ?w0 ?y) (PD ?w0 ?y)))))
- ;(a39)
- (forall (?w0 ?x ?y)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (qt ?w0 ?x ?y))
- (<=> (TQ ?w0 ?x)
- (OR (TQ ?w0 ?y) (PD ?w0 ?y)))))
- ;(a40)
- (forall (?w0 ?x ?y)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (qt ?w0 ?x ?y))
- (<=> (PQ ?w0 ?x)
- (OR (PQ ?w0 ?y) (PED ?w0 ?y)))))
- ;(a41)
- (forall (?w0 ?x ?y)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (qt ?w0 ?x ?y))
- (<=> (AQ ?w0 ?x)
- (OR (AQ ?w0 ?y) (NPED ?w0 ?y)))))
- ; Ground Axioms:
- ;(a42)
- (forall (?w0 ?x ?y ?z)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?z)
- (qt ?w0 ?x ?y)
- (qt ?w0 ?y ?z))
- (qt ?w0 ?x ?z)))
- ;(a43)
- (forall (?w0 ?x ?y ?z)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?z)
- (qt ?w0 ?x ?y)
- (qt ?w0 ?x ?z))
- (= ?y ?z)))
- ;(a44)
- (forall (?w0 ?f ?x ?y ?z)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?z)
- (qtf ?w0 ?f ?x ?y)
- (qtf ?w0 ?f ?z ?y))
- (= ?x ?z)))
- ;(a45)
- (forall (?w0 ?f ?g ?x ?y ?z)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?z)
- (qtf ?w0 ?f ?x ?y)
- (qtf ?w0 ?g ?y ?z))
- (DJ ?w0 ?f ?g)))
- ; Existential Axioms:
- ;(a46)
- (forall (?w0 ?x)
- (=> (AND (WORLD ?w0) (PARTICULAR ?x) (TQ ?w0 ?x))
- (exists (?y)
- (AND (PARTICULAR ?y)
- (qt ?w0 ?x ?y)
- (PD ?w0 ?y)
- (forall (?z)
- (=> (AND (PARTICULAR ?z)
- (qt ?w0 ?x ?z)
- (PD ?w0 ?z))
- (= ?z ?y)))))))
- ;(a47)
- (forall (?w0 ?x)
- (=> (AND (WORLD ?w0) (PARTICULAR ?x) (PQ ?w0 ?x))
- (exists (?y)
- (AND (PARTICULAR ?y)
- (qt ?w0 ?x ?y)
- (PED ?w0 ?y)
- (forall (?z)
- (=> (AND (PARTICULAR ?z)
- (qt ?w0 ?x ?z)
- (PED ?w0 ?z))
- (= ?z ?y)))))))
- ;(a48)
- (forall (?w0 ?x)
- (=> (AND (WORLD ?w0) (PARTICULAR ?x) (AQ ?w0 ?x))
- (exists (?y)
- (AND (PARTICULAR ?y)
- (qt ?w0 ?x ?y)
- (NPED ?w0 ?y)
- (forall (?z)
- (=> (AND (PARTICULAR ?z)
- (qt ?w0 ?x ?z)
- (NPED ?w0 ?z))
- (= ?z ?y)))))))
- ;(a49)
- (forall (?w0 ?x)
- (=> (AND (WORLD ?w0) (PARTICULAR ?x) (PD ?w0 ?x))
- (exists (?y)
- (AND (PARTICULAR ?y) (qtf ?w0 TL ?y ?x)))))
- ;(a50)
- (forall (?w0 ?x)
- (=> (AND (WORLD ?w0) (PARTICULAR ?x) (PED ?w0 ?x))
- (exists (?y)
- (AND (PARTICULAR ?y) (qtf ?w0 SL ?y ?x)))))
- ;(a51)
- (forall (?w0 ?x)
- (=> (AND (WORLD ?w0) (PARTICULAR ?x) (NPED ?w0 ?x))
- (exists (?f ?y)
- (AND (PARTICULAR ?y)
- (UNIVERSAL ?f)
- (SBL ?w0 AQ ?f)
- (qtf ?w0 ?f ?y ?x)))))
- ; Quale
- ; Immediate Quale
- ; Argument restrictions:
- ;(A52)
- (forall (?w0 ?x ?y)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (ql ?w0 ?x ?y))
- (AND (TR ?w0 ?x) (TQ ?w0 ?y))))
- ;(A53)
- (forall (?w0 ?x ?y)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (ql ?w0 ?x ?y)
- (TL ?w0 ?y))
- (T ?w0 ?x)))
- ; Basic Axioms:
- ;(A54)
- (forall (?w0 ?x ?x1 ?y)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?x1)
- (PARTICULAR ?y)
- (ql ?w0 ?x ?y)
- (ql ?w0 ?x1 ?y))
- (= ?x ?x1)))
- ; Existential Axioms:
- ;(A55)
- (forall (?w0 ?x)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (TQ ?w0 ?x))
- (exists (?y)
- (AND (PARTICULAR ?y) (ql ?w0 ?y ?x)))))
- ;(A56)
- (forall (?w0 ?f ?x ?y ?r ?r1)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?r)
- (PARTICULAR ?r1)
- (L.X ?w0 ?f)
- (?f ?w0 ?x)
- (?f ?w0 ?y)
- (ql ?w0 ?r ?x)
- (ql ?w0 ?r1 ?y))
- (exists (?g)
- (AND (UNIVERSAL ?g)
- (L.X ?w0 ?g)
- (?g ?w0 ?r)
- (?g ?w0 ?r1)))))
- ;(A57)
- (forall (?w0 ?f ?x ?y ?r ?r1)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?r)
- (PARTICULAR ?r1)
- (L.X ?w0 ?f)
- (?f ?w0 ?x)
- (NOT (?f ?w0 ?y))
- (ql ?w0 ?r ?x)
- (ql ?w0 ?r1 ?y))
- (NOT (exists (?g)
- (AND (UNIVERSAL ?g)
- (L.X ?w0 ?g)
- (?g ?w0 ?r)
- (?g ?w0 ?r1))))))
- ; Temporary Quale
- ; Argument restrictions:
- ;(A58)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (ql ?w0 ?x ?y ?t))
- (AND (OR (PR ?w0 ?x) (AR ?w0 ?x))
- (OR (PQ ?w0 ?y) (AQ ?w0 ?y))
- (T ?w0 ?t))))
- ;(A59)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (ql ?w0 ?x ?y ?t))
- (<=> (PR ?w0 ?x) (PQ ?w0 ?y))))
- ;(A60)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (ql ?w0 ?x ?y ?t))
- (<=> (AR ?w0 ?x) (AQ ?w0 ?y))))
- ;(A61)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (ql ?w0 ?x ?y ?t)
- (SL ?w0 ?y))
- (S ?w0 ?x)))
- ; Existential Axioms:
- ;(A62)
- (forall (?w0 ?x)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (OR (PQ ?w0 ?x) (AQ ?w0 ?x))
- (PRE ?w0 ?x ?t))
- (exists (?y)
- (AND (PARTICULAR ?y) (ql ?w0 ?y ?x ?t)))))
- ;(A63)
- (forall (?w0 ?f ?x ?y ?r ?r1 ?t)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?r)
- (PARTICULAR ?r1)
- (PARTICULAR ?t)
- (L.X ?w0 ?f)
- (?f ?w0 ?x)
- (?f ?w0 ?y)
- (ql ?w0 ?r ?x ?t)
- (ql ?w0 ?r1 ?y ?t))
- (exists (?g)
- (AND (UNIVERSAL ?g)
- (L.X ?w0 ?g)
- (?g ?w0 ?r)
- (?g ?w0 ?r1)))))
- ;(A64)
- (forall (?w0 ?f ?x ?y ?r ?r1 ?t)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?r)
- (PARTICULAR ?r1)
- (PARTICULAR ?t)
- (L.X ?w0 ?f)
- (?f ?w0 ?x)
- (NOT (?f ?w0 ?y))
- (ql ?w0 ?r ?x ?t)
- (ql ?w0 ?r1 ?y ?t))
- (NOT (exists (?g)
- (AND (UNIVERSAL ?g)
- (L.X ?w0 ?g)
- (?g ?w0 ?r)
- (?g ?w0 ?r1))))))
- ; Link with Parthood AND extension:
- ;(A65)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (ql ?w0 ?x ?y ?t))
- (PRE ?w0 ?y ?t)))
- ;(A66)
- (forall (?w0 ?x ?y ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t))
- (<=> (ql ?w0 ?x ?y ?t)
- (forall (?u)
- (=> (AND (PARTICULAR ?u) (P ?w0 ?u ?t))
- (ql ?w0 ?x ?y ?u))))))
- ; Dependence AND Spatial Dependence
- ; Links between categories
- ;(A67)
- (forall (?w0) (=> (WORLD ?w0) (MSD ?w0 TQ PD)))
- ;(A68)
- (forall (?w0) (=> (WORLD ?w0) (MSD.S ?w0 PQ PED)))
- ;(A69)
- (forall (?w0) (=> (WORLD ?w0) (MSD ?w0 AQ NPED)))
- ;(A70)
- (forall (?w0) (=> (WORLD ?w0) (OGD ?w0 F NAPO)))
- ;(A71)
- (forall (?w0) (=> (WORLD ?w0) (OSD ?w0 MOB APO)))
- ;(A72)
- (forall (?w0) (=> (WORLD ?w0) (OGD ?w0 SAG APO)))
- ;(A73)
- (forall (?w0) (=> (WORLD ?w0) (OGD ?w0 NASO SC)))
- ;(A74)
- (forall (?w0) (=> (WORLD ?w0) (OD ?w0 NPED PED)))
- ; Characterization of Categories
- ; Perdurant
- ; Conditions on Perdurant's Leaves
- ;(A75)
- (forall (?w0 ?f)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (PSBL ?w0 ACH ?f))
- (AND (NEP.S ?w0 ?f) (CM~ ?w0 ?f) (AT ?w0 ?f))))
- ;(A76)
- (forall (?w0 ?f)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (PSBL ?w0 ACC ?f))
- (AND (NEP.S ?w0 ?f) (CM~ ?w0 ?f) (AT~ ?w0 ?f))))
- ;(A77)
- (forall (?w0 ?f)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (PSBL ?w0 ST ?f))
- (AND (NEP.S ?w0 ?f) (CM ?w0 ?f) (HOM ?w0 ?f))))
- ;(A78)
- (forall (?w0 ?f)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (PSBL ?w0 PRO ?f))
- (AND (NEP.S ?w0 ?f) (CM ?w0 ?f) (HOM~ ?w0 ?f))))
- ; Existential Axioms
- ;(A79)
- (forall (?w0)
- (=> (WORLD ?w0)
- (exists (?f) (AND (UNIVERSAL ?f) (PSBL ?w0 ACH ?f)))))
- ;(A80)
- (forall (?w0)
- (=> (WORLD ?w0)
- (exists (?f) (AND (UNIVERSAL ?f) (PSBL ?w0 ACC ?f)))))
- ;(A81)
- (forall (?w0)
- (=> (WORLD ?w0)
- (exists (?f) (AND (UNIVERSAL ?f) (PSBL ?w0 ST ?f)))))
- ;(A82)
- (forall (?w0)
- (=> (WORLD ?w0)
- (exists (?f) (AND (UNIVERSAL ?f) (PSBL ?w0 PRO ?f)))))
- ; =========================================
- ; THEOREMS
- ; General Properties
- ; (T1)
- (forall (?w0 ?x ?t)
- (=> (AND (WORLD ?w0) (PARTICULAR ?x) (PARTICULAR ?t))
- (NOT (K ?w0 ?x ?x ?t))))
- ; (T2)
- (forall (?w0 ?f ?g)
- (=> (AND (WORLD ?w0) (UNIVERSAL ?f) (UNIVERSAL ?g) (SK ?w0 ?f ?g))
- (SD ?w0 ?f ?g)))
- ; (T3)
- (forall (?w0 ?f ?g)
- (=> (AND (WORLD ?w0) (UNIVERSAL ?f) (UNIVERSAL ?g) (GK ?w0 ?f ?g))
- (GD ?w0 ?f ?g)))
- ; (T4)
- (forall (?w0 ?f ?g ?h)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (UNIVERSAL ?h)
- (SK ?w0 ?f ?g)
- (SK ?w0 ?g ?h)
- (DJ ?w0 ?f ?h))
- (SK ?w0 ?f ?h)))
- ; (T5)
- (forall (?w0 ?f ?g ?h)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (UNIVERSAL ?h)
- (GK ?w0 ?f ?g)
- (GK ?w0 ?g ?h)
- (DJ ?w0 ?f ?h))
- (GK ?w0 ?f ?h)))
- ; Ground Properties
- ; (T6)
- (forall (?w0 ?x ?t)
- (=> (AND (WORLD ?w0) (PARTICULAR ?x) (PARTICULAR ?t))
- (NOT (PC ?w0 ?x ?x ?t))))
- ; (T7)
- (forall (?w0 ?x ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?y)
- (PARTICULAR ?t)
- (PC ?w0 ?x ?y ?t))
- (NOT (PC ?w0 ?y ?x ?t))))
- ; (T8)
- (forall (?w0 ?x)
- (=> (AND (WORLD ?w0) (PARTICULAR ?x))
- (NOT (qt ?w0 ?x ?x))))
- ; General properties
- ; (T9)
- (forall (?w0 ?f ?g ?h)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (UNIVERSAL ?h)
- (SD ?w0 ?f ?g)
- (SD ?w0 ?g ?h)
- (DJ ?w0 ?f ?h))
- (SD ?w0 ?f ?h)))
- ; (T10)
- (forall (?w0 ?f ?g ?h)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (UNIVERSAL ?h)
- (GD ?w0 ?f ?g)
- (GD ?w0 ?g ?h)
- (DJ ?w0 ?f ?h))
- (GD ?w0 ?f ?h)))
- ; (T11)
- (forall (?w0 ?f ?g ?h)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (UNIVERSAL ?h)
- (SD ?w0 ?f ?g)
- (GD ?w0 ?g ?h)
- (DJ ?w0 ?f ?h))
- (GD ?w0 ?f ?h)))
- ; (T12)
- (forall (?w0 ?f ?g ?h)
- (=> (AND (WORLD ?w0)
- (UNIVERSAL ?f)
- (UNIVERSAL ?g)
- (UNIVERSAL ?h)
- (GD ?w0 ?f ?g)
- (SD ?w0 ?g ?h)
- (DJ ?w0 ?f ?h))
- (GD ?w0 ?f ?h)))
- ; (T13)
- (forall (?w0 ?f ?g)
- (=> (AND (WORLD ?w0) (UNIVERSAL ?f) (UNIVERSAL ?g) (SD.S ?w0 ?f ?g))
- (SD ?w0 ?f ?g)))
- ; (T14)
- (forall (?w0 ?f ?g)
- (=> (AND (WORLD ?w0) (UNIVERSAL ?f) (UNIVERSAL ?g) (GD.S ?w0 ?f ?g))
- (GD ?w0 ?f ?g)))
- ; Being Present
- ; (T15)
- (forall (?w0 ?x)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (OR (ED ?w0 ?x) (PD ?w0 ?x) (Q ?w0 ?x)))
- (exists (?t)
- (AND (PARTICULAR ?t) (PRE ?w0 ?x ?t)))))
- ; (T16)
- (forall (?w0 ?x ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?t)
- (OR (PED ?w0 ?x) (PQ ?w0 ?x))
- (PRE ?w0 ?x ?t))
- (exists (?s)
- (AND (PARTICULAR ?s) (PRE ?w0 ?s ?x ?t)))))
- ; (T17)
- (forall (?w0 ?x ?t ?t1)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?t)
- (PARTICULAR ?t1)
- (PRE ?w0 ?x ?t)
- (P ?w0 ?t1 ?t))
- (PRE ?w0 ?x ?t1)))
- ; (T18)
- (forall (?w0 ?x ?s ?t)
- (=> (AND (WORLD ?w0)
- (PARTICULAR ?x)
- (PARTICULAR ?s)
- (PARTICULAR ?t)
- (PRE ?w0 ?s ?x ?t))
- (PRE ?w0 ?x ?t)))
- IST Project 2001-33052 WonderWeb:
- Ontology Infrastructure FOR the Semantic Web
- 12
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement