Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- Inductive wrong_ev (m:nat) : Prop :=
- | wrong_ev_0 : wrong_ev 0 -> wrong_ev m
- | wrong_ev_SS : forall n, wrong_ev n -> wrong_ev (S (S n)) -> wrong_ev m.
- Theorem nonsense : forall n (e:wrong_ev n), False.
- Proof.
- intros n H.
- induction H.
- apply IHwrong_ev.
- apply IHwrong_ev1.
- Qed.
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement