Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- \begin{algorithm}[!h]
- \DontPrintSemicolon
- \KwIn{I$^2$-DES model G}
- \KwOut{I$^2$-DES Diagnoser}
- Partition $ X_0 $ into equivalent subsets $ X_{01}, X_{02}, \ldots,
- X_{0m} $ \;
- \For{all $ i $, $ 1 \leq i \leq m $ }
- {
- $ z_{0i} = {\cal U}^*(X_{0i}) $\;
- }
- $Z_0 \leftarrow z_{01} \cup \cdots \cup z_{0m} $ \;
- $Z \leftarrow Z_0$ \;
- $A \leftarrow \phi$ \;
- \For{all $z \in Z$ }
- {
- \small
- \tcc*[f]{ Find the set of measurable $G$-transitions
- ($\Im_{mz}$)
- outgoing from $z$}\;
- \normalsize
- $ \Im _{mz} \leftarrow \{ \tau |\tau \in \Im _m \wedge initial(\tau
- )
- \in
- z\}$\;
- \small
- \tcc*[f]{ Find the set of all measurement equivalent classes
- $A_z$, of $\Im_{mz}$}\;
- \normalsize
- \For{all $ a \in A_z$}
- {
- $z_a^+ = \{final(\tau)| \tau \in a \}$\;
- $z^+ = {\cal{U}}^*(z_a^+)$\;
- $Z = Z \cup \{z^+\}$\;
- $A = A \cup \{a\}$\;
- }
- }
- \caption{Algorithm for construction of diagnoser $O$ for an I$^2$-DES model $G$}
- \label{alg:diag_alg_asmitm}
- \end{algorithm}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement