Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- Base case:
- 1³ = 1/4 (1² (1 + 1)²)
- ⇔ 1 = 1
- ⇔ true
- Inductive hypothesis:
- 1³ + 2³ + ... + n³ = 1/4 (n² (n + 1)²) ⇒ 1³ + 2³ + ... + n³ + (n + 1)³ = 1/4 ((n + 1)² (n + 2)²)
- ⇔ 1³ + 2³ + ... + n³ = 1/4 (n² (n + 1)²) ⇒ 1/4 (n² (n + 1)²) + (n + 1)³ = 1/4 ((n + 1)² (n + 2)²)
- ⇔ (n² (n + 1)²) + 4(n + 1)³ = ((n + 1)² (n + 2)²)
- ⇔ n⁴ + 6n³ + 13n² + 12n + 4 = n⁴ + 6n³ + 13n² + 12n + 4
- ⇔ 0 = 0
- ⇔ true
- ∴ 1³ + 2³ + ... + n³ = 1/4 (n² (n + 1)²) ∀n ≥ 1
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement