Advertisement
pseudocreator

Latex prvi deo

May 13th, 2014
434
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 4.23 KB | None | 0 0
  1. \documentclass[11pt]{article}
  2. \usepackage[utf8]{inputenc}
  3.  
  4.  
  5.  
  6. \usepackage{geometry}
  7. \geometry{a4paper}
  8.  
  9. \usepackage{graphicx}
  10. \usepackage[parfill]{parskip}
  11.  
  12.  
  13. \usepackage{booktabs}
  14. \usepackage{array}
  15. \usepackage{paralist}
  16. \usepackage{verbatim}
  17. \usepackage{subfig}
  18. \usepackage{amsfonts}
  19. \usepackage{amsmath}
  20. \usepackage{amsmath}
  21. \usepackage{amssymb}
  22.  
  23.  
  24. \usepackage{fancyhdr}
  25. \pagestyle{fancy}
  26. \renewcommand{\headrulewidth}{0pt}
  27. \lhead{}\chead{}\rhead{}
  28. \lfoot{}\cfoot{\thepage}\rfoot{}
  29.  
  30.  
  31. \usepackage{sectsty}
  32. \allsectionsfont{\sffamily\mdseries\upshape}
  33. \geometry{margin=1.5in}
  34.  
  35. \usepackage[nottoc,notlof,notlot]{tocbibind}
  36. \usepackage[titles,subfigure]{tocloft}
  37. \renewcommand{\cftsecfont}{\rmfamily\mdseries\upshape}
  38. \renewcommand{\cftsecpagefont}{\rmfamily\mdseries\upshape}
  39.  
  40. \title{Analiticka geometrija \textbf{ispitni zadatak}}
  41. \author{Lazar Savic(dobio savete*pomoc oko uvoznih listi) }
  42.  
  43.  
  44. \begin{document}
  45. \pagestyle{empty}
  46. the coset space. For any measurable subset $E\subset G/H$ , we may easily choose
  47. a measurable function $\delta_E:G\to\mathbb{C}$ so that
  48. %prva formula/ koriscenje arraya{};
  49. \begin{equation}
  50. \nonumber
  51. \delta_E(g)=\delta_E^H(gH) = \left\{
  52. \begin{array}{l l}
  53. 1 & \quad \text{if $gH\in E$,}\\
  54. 0 & \quad \text{if $gH\notin E$.}
  55. \end{array} \right.
  56. \end{equation}
  57. %kraj prve formule
  58. We may then define an $H$–invariant quotient measure $\tilde{\mu}$ satisfying:
  59. %integrlana f 1
  60. \begin{equation}
  61. \nonumber
  62. \tilde{\mu}=\int_G \delta_E(g)d\mu(g) = \int_{G/H} \delta_E^H(gH)d\tilde{\mu}(gH),
  63. \end{equation}
  64. %kraj integralne f 1
  65. and
  66. %pocetak integralne f 2
  67. \begin{equation}
  68. \nonumber
  69. \int_Gf(g)d\mu(g)=\int_{G/H}f^H(gH)d\tilde{\mu}(gH),
  70. \end{equation}
  71. %kraj integralne f2
  72. for all integrable functions $f:G\to\mathbb{C}$. \hfill $\square$
  73.  
  74. \textbf{Remarks} There is an analogous version of Theorem 1.5.1 for left coset spaces $H\backslash G$. Note that we are not assuming that $H$ is a normal subgroup of $G$. Thus $G/H$ (respectively $H\backslash G$) may not be a group.
  75.  
  76. \textbf{Example 1.5.2} (\textbf{Left invariant measure on} $GL(n,\mathbb{R})/(O(n,\mathbb{R})\cdot \mathbb{R}^x)$)
  77.  
  78. For $n\geq 2$, we now explicitly construct a left invariant measure on the generalized upper half-plane $\mathfrak{h}^n=GL(n,\mathbb{R})/(O(n,\mathbb{R})\cdot \mathbb{R}^x)$.Returning to the Iwasawa decomposition (Proposition 1.2.6), every $z\in\mathfrak{h}^n$ has a representation in the form $z = xy$ with
  79. %pocetak formule/matrica x{zavrseno};
  80. \begin{equation}
  81. \nonumber
  82. z = \begin{pmatrix}
  83. 1 & x_{1,2} & x_{1,3} & \cdots & & x_{1,n}\\
  84. & 1 & x_{2,3}& \cdots & & x_{2,n}\\
  85. & & & \ddots && \vdots\\
  86. &&&&1&x_{n-1,n}\\
  87. &&&&&1
  88. \end{pmatrix},
  89. y=\begin{pmatrix}
  90. y_1y_2\cdots y_{n-1}&&&&\\
  91. &y_2y_3\cdots y_{n-2}&&&\\
  92. &&\ddots&&\\
  93. &&& n &\\
  94. &&&&1
  95. \end{pmatrix},
  96. \end{equation}
  97. %kraj formule/matrica
  98. with $x_{i,j}\in\mathbb{R}$ for $1\leq i\leq j\leq n$ and $y_i>0$ $1\leq i\leq n$. Let $d^*z$ denote the left invariant measure on $\mathfrak{h}^n$. Then $d^*z$ has the property that
  99. %pocetak zvezdica formule
  100. \begin{equation}
  101. \nonumber
  102. d^*(gz)=d^*z
  103. \end{equation}
  104. %kraj zvezdica formule
  105. for all $g\in GL(n,\mathbb{R}).$
  106.  
  107.  
  108. \textbf{Proposition 1.5.3} \emph{The left invariant $GL(n,\mathbb{r})-$measure $d^*z$ on $\mathfrak{h}^n$ can be given explicitly by the formula \[d^z=d^*xd^*y\] where \[d^*x = \prod_{1\leq i\leq j\leq n}dx_{i,j}, \>\>\> d^*y = \prod_{k=1}^{n-1}y_k^{-k(n-k)-1}dy_k. \tag{1.5.4}\]}
  109.  
  110. For example, for $n=2$, with $z = \begin{pmatrix}
  111. y & x\\
  112. 0 & 1
  113. \end{pmatrix}$,we have $d^*z = \frac{dxdy}{y^2}$ while for $n=3$ with
  114. %formula zagrada k_m
  115. \begin{equation}
  116. \nonumber
  117. z= \begin{pmatrix}
  118. y_1y_2 & x_{1,2} y_1 & x_{1,3}\\
  119. 0 & y_1 & x_{2,3}\\
  120. 0&0&1
  121. \end{pmatrix},
  122. \end{equation}
  123. %kraj formule zagrada k_m
  124. we have
  125. %pocetak formule laka
  126. \begin{equation}
  127. \nonumber
  128. d^*z = dx_{1,2}dx_{1,3}dx_{2,3}\frac{dy_1dy_2}{(y_1y_2)^3}.
  129. \end{equation}
  130. $kraj formule laka
  131. \emph{Proof} We sketch the proof. The group $GL(n,\mathbb{R})$ is generated by diagonal matrices, upper triangular matrices with 1s on the diagonal, and the Weyl group $W_n$ which consists of all $n\times n$ matrices with exactly one 1 in each row and column and zeros everywhere else. For example,
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement