Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import re
- import os
- import cv2
- from pycoral.utils.dataset import read_label_file
- from pycoral.utils.edgetpu import make_interpreter
- from pycoral.adapters import common
- from pycoral.adapters import classify
- # the TFLite converted to be used with edgetpu
- modelPath = './efficientdet-lite-ha_edgetpu.tflite'
- # The path to labels.txt that was downloaded with your model
- labelPath = './ha-labels.txt'
- # This function takes in a TFLite Interptere and Image, and returns classifications
- def classifyImage(interpreter, image):
- size = common.input_size(interpreter)
- common.set_input(interpreter, cv2.resize(image, size, fx=0, fy=0,
- interpolation=cv2.INTER_CUBIC))
- interpreter.invoke()
- return classify.get_classes(interpreter)
- def main():
- # Load your model onto the TF Lite Interpreter
- interpreter = make_interpreter(modelPath)
- interpreter.allocate_tensors()
- labels = read_label_file(labelPath)
- cap = cv2.VideoCapture('rtsp://192.168.1.212:8020/h264_pcm.sdp')
- while cap.isOpened():
- ret, frame = cap.read()
- if not ret:
- break
- # Flip image so it matches the training input
- frame = cv2.flip(frame, 1)
- # Classify and display image
- results = classifyImage(interpreter, frame)
- # cv2.imshow('frame', frame)
- print(f'Label: {labels[results[0].id]}, Score: {results[0].score}')
- # if cv2.waitKey(1) & 0xFF == ord('q'):
- # break
- cap.release()
- cv2.destroyAllWindows()
- if __name__ == '__main__':
- main()
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement