Advertisement
mayankjoin3

Untitled

Nov 11th, 2024
49
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
BibTeX 3.89 KB | None | 0 0
  1. @article{zounemat2020complexities,
  2.  title={On the complexities of sediment load modeling using integrative machine learning: Application of the great river of Lo{\'\i}za in Puerto Rico},
  3.  author={Zounemat-Kermani, Mohammad and Mahdavi-Meymand, Amin and Alizamir, Meysam and Adarsh, S and Yaseen, Zaher Mundher},
  4.  journal={Journal of Hydrology},
  5.  volume={585},
  6.  pages={124759},
  7.  year={2020},
  8.  publisher={Elsevier}
  9. }
  10.  
  11. @article{aires2023machine,
  12.  title={Machine learning-based modeling of surface sediment concentration in Doce river basin},
  13.  author={Aires, Uilson Ricardo Ven{\^a}ncio and da Silva, Demetrius David and Fernandes Filho, Elp{\'\i}dio In{\'a}cio and Rodrigues, Lineu Neiva and Uliana, Eduardo Morgan and Amorim, Ricardo Santos Silva and de Melo Ribeiro, Celso Bandeira and Campos, Jasmine Alves},
  14.  journal={Journal of Hydrology},
  15.  volume={619},
  16.  pages={129320},
  17.  year={2023},
  18.  publisher={Elsevier}
  19. }
  20.  
  21. @article{el2024physics,
  22.  title={Physics-informed machine learning algorithms for forecasting sediment yield: an analysis of physical consistency, sensitivity, and interpretability},
  23.  author={El Bilali, Ali and Brouziyne, Youssef and Attar, Oumaima and Lamane, Houda and Hadri, Abdessamad and Taleb, Abdeslam},
  24.  journal={Environmental Science and Pollution Research},
  25.  volume={31},
  26.  number={34},
  27.  pages={47237--47257},
  28.  year={2024},
  29.  publisher={Springer}
  30. }
  31.  
  32. @article{salih2020river,
  33.  title={River suspended sediment load prediction based on river discharge information: application of newly developed data mining models},
  34.  author={Salih, Sinan Q and Sharafati, Ahmad and Khosravi, Khabat and Faris, Hossam and Kisi, Ozgur and Tao, Hai and Ali, Mumtaz and Yaseen, Zaher Mundher},
  35.  journal={Hydrological Sciences Journal},
  36.  volume={65},
  37.  number={4},
  38.  pages={624--637},
  39.  year={2020},
  40.  publisher={Taylor \& Francis}
  41. }
  42.  
  43. @article{shakya2023predicting,
  44.  title={Predicting total sediment load transport in rivers using regression techniques, extreme learning and deep learning models},
  45.  author={Shakya, Deepti and Deshpande, Vishal and Kumar, Bimlesh and Agarwal, Mayank},
  46.  journal={Artificial Intelligence Review},
  47.  volume={56},
  48.  number={9},
  49.  pages={10067--10098},
  50.  year={2023},
  51.  publisher={Springer}
  52. }
  53.  
  54. @article{nguyen2024applying,
  55.  title={Applying a machine learning-based method for the prediction of suspended sediment concentration in the Red river basin},
  56.  author={Nguyen, Son Q and Nguyen, Linh C and Ngo-Duc, Thanh and Ouillon, Sylvain},
  57.  journal={Modeling Earth Systems and Environment},
  58.  volume={10},
  59.  number={2},
  60.  pages={2675--2692},
  61.  year={2024},
  62.  publisher={Springer}
  63. }
  64.  
  65. @article{achite2022advanced,
  66.  title={Advanced machine learning models development for suspended sediment prediction: comparative analysis study},
  67.  author={Achite, Mohammed and Yaseen, Zaher Mundher and Heddam, Salim and Malik, Anurag and Kisi, Ozgur},
  68.  journal={Geocarto International},
  69.  volume={37},
  70.  number={21},
  71.  pages={6116--6140},
  72.  year={2022},
  73.  publisher={Taylor \& Francis}
  74. }
  75.  
  76. @article{almubaidin2023enhancing,
  77.  title={Enhancing sediment transport predictions through machine learning-based multi-scenario regression models},
  78.  author={Almubaidin, Mohammad Abdullah Abid and Latif, Sarmad Dashti and Balan, Kalaiarasan and Ahmed, Ali Najah and El-Shafie, Ahmed},
  79.  journal={Results in Engineering},
  80.  volume={20},
  81.  pages={101585},
  82.  year={2023},
  83.  publisher={Elsevier}
  84. }
  85.  
  86.  
  87. @article{didkovskyi2022comparison,
  88.  title={A comparison between machine learning and functional geostatistics approaches for data-driven analyses of sediment transport in a pre-alpine stream},
  89.  author={Didkovskyi, Oleksandr and Ivanov, Vladislav and Radice, Alessio and Papini, Monica and Longoni, Laura and Menafoglio, Alessandra},
  90.  journal={Mathematical Geosciences},
  91.  volume={54},
  92.  number={3},
  93.  pages={467--506},
  94.  year={2022},
  95.  publisher={Springer}
  96. }
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement