SHOW:
|
|
- or go back to the newest paste.
1 | // Using FastAC by Amir Said -- http://www.cipr.rpi.edu/research/SPIHT/EW_Code/FastAC.zip | |
2 | #include "arithmetic_codec.h" | |
3 | ||
4 | #include <boost/random/mersenne_twister.hpp> | |
5 | #include <boost/random/laplace_distribution.hpp> | |
6 | ||
7 | #include <vector> | |
8 | ||
9 | std::size_t const N_VAL(1 << 20); | |
10 | ||
11 | // ============================================================================ | |
12 | // Generate some random data with distribution similar to what's in the question | |
13 | ||
14 | std::vector<int32_t> gen_data(std::size_t n) | |
15 | { | |
16 | boost::random::mt19937 rng; | |
17 | boost::random::laplace_distribution<> dist(0, 20); | |
18 | ||
19 | std::vector<int32_t> data; | |
20 | data.reserve(n); | |
21 | ||
22 | for (; data.size() < n;) { | |
23 | int32_t v = static_cast<int32_t>(std::round(dist(rng))); | |
24 | if ((v >= -256) && (v <= 255)) { | |
25 | data.push_back(v); | |
26 | } | |
27 | } | |
28 | ||
29 | return data; | |
30 | } | |
31 | ||
32 | // ============================================================================ | |
33 | // Ziz-Zag Coding | |
34 | // | |
35 | // Maps signed integers into unsigned integers | |
36 | // 0 => 0, -1 => 1, 1 => 2, -2 => 3, 2 => 4 ... | |
37 | ||
38 | uint32_t zigzag_encode(int32_t v) | |
39 | { | |
40 | return static_cast<uint32_t>((v >> 31) ^ (v << 1)); | |
41 | } | |
42 | ||
43 | std::vector<uint32_t> zigzag_encode(std::vector<int32_t> const& data) | |
44 | { | |
45 | std::vector<uint32_t> result(data.size()); | |
46 | std::transform(data.begin(), data.end(), result.begin(), | |
47 | [](int32_t v) -> uint32_t { return zigzag_encode(v); }); | |
48 | return result; | |
49 | } | |
50 | ||
51 | int32_t zigzag_decode(uint32_t v) | |
52 | { | |
53 | return (static_cast<int32_t>(v) >> 1) ^ -(static_cast<int32_t>(v)& 1); | |
54 | } | |
55 | ||
56 | std::vector<int32_t> zigzag_decode(std::vector<uint32_t> const& data) | |
57 | { | |
58 | std::vector<int32_t> result(data.size()); | |
59 | std::transform(data.begin(), data.end(), result.begin(), | |
60 | [](uint32_t v) -> int32_t { return zigzag_decode(v); }); | |
61 | return result; | |
62 | } | |
63 | ||
64 | // ============================================================================ | |
65 | // Simple approach with 1 adaptive model for 512 symbols | |
66 | // Processes zig-zag coded 9-bit values | |
67 | ||
68 | template<typename ModelT, typename CodecT = Arithmetic_Codec> | |
69 | uint32_t encode(std::vector<uint32_t> const& buffer | |
70 | , ModelT& model | |
71 | , CodecT& encoder) | |
72 | { | |
73 | encoder.start_encoder(); | |
74 | for (uint32_t v : buffer) { | |
75 | encoder.encode(v, model); | |
76 | } | |
77 | return 8 * encoder.stop_encoder(); | |
78 | } | |
79 | ||
80 | template<typename ModelT, typename CodecT = Arithmetic_Codec> | |
81 | void decode(std::vector<uint32_t>& buffer | |
82 | , ModelT& model | |
83 | , CodecT& decoder) | |
84 | { | |
85 | decoder.start_decoder(); | |
86 | for (uint32_t i(0); i < buffer.size(); ++i) { | |
87 | buffer[i] = decoder.decode(model); | |
88 | } | |
89 | decoder.stop_decoder(); | |
90 | } | |
91 | ||
92 | void test_simple(std::vector<uint32_t> const& zdata) | |
93 | { | |
94 | Arithmetic_Codec codec(N_VAL * 2); | |
95 | Adaptive_Data_Model adaptive_model(512); | |
96 | ||
97 | std::size_t raw_size_bits(N_VAL * 9); | |
98 | std::size_t packed_size_bits(encode(zdata, adaptive_model, codec)); | |
99 | double ratio(double(packed_size_bits) / raw_size_bits * 100); | |
100 | std::cout << "Ratio = " << ratio << " %\n"; | |
101 | ||
102 | std::vector<uint32_t> dzdata(N_VAL); | |
103 | ||
104 | adaptive_model.reset(); | |
105 | ||
106 | decode(dzdata, adaptive_model, codec); | |
107 | ||
108 | std::cout << "Match = " << ((zdata == dzdata) ? "true" : "false") << "\n"; | |
109 | } | |
110 | ||
111 | // ============================================================================ | |
112 | // Split approach with 3 adaptive models (1*2 and 2*256 symbols) | |
113 | // Processes zig-zag coded 9-bit values | |
114 | // | |
115 | // First the MSB is coded using the 2 symbol model_msb | |
116 | // If MSB == 0 then LSB is coded using the 256 symbold model_lsb0 | |
117 | // If MSB == 1 then LSB is coded using the 256 symbold model_lsb1 | |
118 | ||
119 | template<typename ModelT, typename CodecT = Arithmetic_Codec> | |
120 | uint32_t encode(std::vector<uint32_t> const& buffer | |
121 | , ModelT& model_msb | |
122 | , ModelT& model_lsb0 | |
123 | , ModelT& model_lsb1 | |
124 | , CodecT& encoder) | |
125 | { | |
126 | encoder.start_encoder(); | |
127 | for (uint32_t v : buffer) { | |
128 | uint32_t msb(v >> 8); | |
129 | uint32_t lsb(v & 0xFF); | |
130 | ||
131 | encoder.encode(msb, model_msb); | |
132 | if (msb == 0) { | |
133 | encoder.encode(lsb, model_lsb0); | |
134 | } else { | |
135 | encoder.encode(lsb, model_lsb1); | |
136 | } | |
137 | } | |
138 | return 8 * encoder.stop_encoder(); | |
139 | } | |
140 | ||
141 | template<typename ModelT, typename CodecT = Arithmetic_Codec> | |
142 | void decode(std::vector<uint32_t>& buffer | |
143 | , ModelT& model_msb | |
144 | , ModelT& model_lsb0 | |
145 | , ModelT& model_lsb1 | |
146 | , CodecT& decoder) | |
147 | { | |
148 | decoder.start_decoder(); | |
149 | for (uint32_t i(0); i < buffer.size(); ++i) { | |
150 | uint32_t msb(decoder.decode(model_msb)); | |
151 | uint32_t lsb; | |
152 | if (msb == 0) { | |
153 | lsb = decoder.decode(model_lsb0); | |
154 | } else { | |
155 | lsb = decoder.decode(model_lsb1); | |
156 | } | |
157 | buffer[i] = (msb << 8) | lsb; | |
158 | } | |
159 | decoder.stop_decoder(); | |
160 | } | |
161 | ||
162 | void test_split(std::vector<uint32_t> const& zdata) | |
163 | { | |
164 | ||
165 | Arithmetic_Codec codec(N_VAL * 2); | |
166 | Adaptive_Data_Model adaptive_model_msb(2); | |
167 | Adaptive_Data_Model adaptive_model_lsb0(256); | |
168 | Adaptive_Data_Model adaptive_model_lsb1(256); | |
169 | ||
170 | std::size_t raw_size_bits(N_VAL * 9); | |
171 | std::size_t packed_size_bits(encode(zdata, adaptive_model_msb | |
172 | , adaptive_model_lsb0, adaptive_model_lsb1, codec)); | |
173 | double ratio(double(packed_size_bits) / raw_size_bits * 100); | |
174 | std::cout << "Ratio = " << ratio << " %\n"; | |
175 | ||
176 | std::vector<uint32_t> dzdata(N_VAL); | |
177 | ||
178 | adaptive_model_msb.reset(); | |
179 | adaptive_model_lsb0.reset(); | |
180 | adaptive_model_lsb1.reset(); | |
181 | ||
182 | decode(dzdata, adaptive_model_msb | |
183 | , adaptive_model_lsb0, adaptive_model_lsb1, codec); | |
184 | ||
185 | std::cout << "Match = " << ((zdata == dzdata) ? "true" : "false") << "\n"; | |
186 | } | |
187 | ||
188 | // ============================================================================ | |
189 | // PN approach with 3 adaptive models (1*2 and 2*256 symbols) | |
190 | // Processes signed 9-bit values | |
191 | // | |
192 | // First the sign is coded using the 2 symbol model_sign | |
193 | // If sign positive then abs value is coded using the 256 symbol model_valuep | |
194 | // If sign negative then abs value - 1 is coded using the 256 symbol model_valuen | |
195 | ||
196 | template<typename ModelT, typename CodecT = Arithmetic_Codec> | |
197 | uint32_t encode(std::vector<int32_t> const& buffer | |
198 | , ModelT& model_sign | |
199 | , ModelT& model_valuep | |
200 | , ModelT& model_valuen | |
201 | , CodecT& encoder) | |
202 | { | |
203 | encoder.start_encoder(); | |
204 | for (int32_t v : buffer) { | |
205 | uint32_t sign, value; | |
206 | if (v >= 0) { | |
207 | sign = 0; | |
208 | value = v; | |
209 | } else { | |
210 | sign = 1; | |
211 | value = std::abs(v) - 1; | |
212 | } | |
213 | ||
214 | encoder.encode(sign, model_sign); | |
215 | if (sign == 0) { | |
216 | encoder.encode(value, model_valuep); | |
217 | } else { | |
218 | encoder.encode(value, model_valuen); | |
219 | } | |
220 | } | |
221 | return 8 * encoder.stop_encoder(); | |
222 | } | |
223 | ||
224 | template<typename ModelT, typename CodecT = Arithmetic_Codec> | |
225 | void decode(std::vector<int32_t>& buffer | |
226 | , ModelT& model_sign | |
227 | , ModelT& model_valuep | |
228 | , ModelT& model_valuen | |
229 | , CodecT& decoder) | |
230 | { | |
231 | decoder.start_decoder(); | |
232 | for (uint32_t i(0); i < buffer.size(); ++i) { | |
233 | uint32_t sign(decoder.decode(model_sign)); | |
234 | int32_t value; | |
235 | if (sign == 0) { | |
236 | value = decoder.decode(model_valuep); | |
237 | buffer[i] = value; | |
238 | } else { | |
239 | value = decoder.decode(model_valuen); | |
240 | buffer[i] = -(value + 1); | |
241 | } | |
242 | } | |
243 | decoder.stop_decoder(); | |
244 | } | |
245 | ||
246 | void test_split_pn(std::vector<int32_t> const& data) | |
247 | { | |
248 | ||
249 | Arithmetic_Codec codec(N_VAL * 2); | |
250 | Adaptive_Data_Model adaptive_model_sign(2); | |
251 | Adaptive_Data_Model adaptive_model_valuep(256); | |
252 | Adaptive_Data_Model adaptive_model_valuen(256); | |
253 | ||
254 | std::size_t raw_size_bits(N_VAL * 9); | |
255 | std::size_t packed_size_bits(encode(data, adaptive_model_sign | |
256 | , adaptive_model_valuep, adaptive_model_valuen, codec)); | |
257 | double ratio(double(packed_size_bits) / raw_size_bits * 100); | |
258 | std::cout << "Ratio = " << ratio << " %\n"; | |
259 | ||
260 | std::vector<int32_t> ddata(N_VAL); | |
261 | ||
262 | adaptive_model_sign.reset(); | |
263 | adaptive_model_valuep.reset(); | |
264 | adaptive_model_valuen.reset(); | |
265 | ||
266 | decode(ddata, adaptive_model_sign | |
267 | , adaptive_model_valuep, adaptive_model_valuen, codec); | |
268 | ||
269 | std::cout << "Match = " << ((data == ddata) ? "true" : "false") << "\n"; | |
270 | } | |
271 | ||
272 | // ============================================================================ | |
273 | ||
274 | int main() | |
275 | { | |
276 | std::vector<int32_t> data(gen_data(N_VAL)); | |
277 | std::vector<uint32_t> zdata(zigzag_encode(data)); | |
278 | ||
279 | test_simple(zdata); | |
280 | test_split(zdata); | |
281 | test_split_pn(data); | |
282 | ||
283 | return 0; | |
284 | } | |
285 | ||
286 | // ============================================================================ |