Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- \documentclass{article}[14pt,a4paper]
- % Comment the following line to NOT allow the usage of umlauts
- %\usepackage[utf8]{inputenc}
- %\useusepackage[utf8]{imputenc} %\usepackage[a4paper, lmargin=2cm, rmargin=2cm, bottom=2cm]{geometry}
- \usepackage{color}
- % Uncomment the following line to allow the usage of graphics (.png, .jpg)
- \usepackage{multicol} \usepackage{verbatim} \usepackage{graphicx} \usepackage{amsmath} \usepackage[all]{xy} \usepackage{pst-all} \usepackage{tikz} \usepackage{gnuplottex} \usepackage{pst-pdf}
- \usepackage{mathtools,amssymb}
- \usepackage{xcolor}
- \usepackage{tikz-3dplot}
- %\usepackage[colorlinks=true,linkcolor=magenta,citecolor=blue,filecolor=magenta,url(color=blue]{hyperref} \urlstyle{same}
- %\usepackage{chronology}
- %\usepackage{pst-solides3d}
- \tikzset{flippedeventlabel/.append style={align=center}} \usetikzlibrary{datavisualization} \usetikzlibrary{matrix.skeleton} \usetikzlibrary[shapes,arrows,positioning,fit,backgrounds,intersections,shadows,calc] \usetikzlibrary{positioning} \usetikzlibrary{decorations.text} \usetikzlibrary{decorations.pathmorphing}
- \usepackage{pgfplots} \pgfplotsset{width=10cm,compat=1.9}
- \renewcommand{\thefootnote}{\fnsymbol{footnote}}
- %\psset{viewpoint=10 18 60 rtp2xyz,Decran=10,fontsize=10,unit=0.65cm}
- \usetikzlibrary{patterns}
- \pgfmathdeclarefunction{gauss}{2}{\pgfmathparse{1/(#2*sqrt(2*pi))*exp(-((x-#1)^2)/(#2^2))} }
- \pgfmathdeclarefunction{gauss1}{2}{\pgfmathparse{1/(#2*sqrt(2*pi))*exp(-(((1.2*x-#1)+1)^2)/(#2^2))} }
- \pgfmathdeclarefunction{gauss2}{2}{\pgfmathparse{1/(#2*sqrt(2*pi))*exp(-(((1.2*x-#1)-1)^2)/(#2^2))} }
- % Start the document
- \begin{document}
- \pagecolor{red!20}
- \begin{center}
- \tdplotsetmaincoords{10}{110}
- \begin{tikzpicture}[scale=1.5]
- \draw [white] node at (3,1){\textbf{\textcolor{green}{\Huge{Función de Densidad Binomial}}}};
- \draw [white] node at (3,-0.5)
- {
- \begin{minipage}{13cm}\textcolor{white}{\huge{Sea $\mathsf{X}$ la variable aleatoria que mide la cantidad de éxitos $\mathsf{x}$, con probabilidad $\mathsf{p}$, que se obtienen en $\mathsf{n}$ ensayos de Bernoulli, y recordando que $\mathsf{\binom{n}{x}=\frac{n!}{x!(n-x)!}}$, entonces:}}\\
- \end{minipage};
- };
- \draw [white] node at (3,-2){\textbf{\huge{$\mathsf{P(X = x) = f(x)\ = \binom{n}{x}\ p^x\ (1-p)^{n-x}}$ }}};
- \draw [white] node at (3,-3){\textbf{\textcolor{green}{\Huge{Función Acumulada Binomial}}}};
- \draw [white] node at (3,-4){\textbf{\huge{$\mathsf{\displaystyle{P(X \leq x) = F(x)\ = \Sigma_{k=0}^{x}\ \binom{n}{k}\ p^k\ (1-p)^{n-k}}}$ }}};
- \draw [white] node at (3,-6)
- {
- \begin{minipage}{13cm}\textcolor{white}{\huge{De acuerdo al cálculo del primer y segundo momento se obtiene que:
- \begin{itemize}
- \item Media: $\mathsf{\mu\ =\ np}$
- \item Varianza: $\mathsf{\sigma^2\ =\ np(1-p)}$
- \end{itemize}
- }}
- \end{minipage};
- };
- \end{tikzpicture}
- \end{center}
- \begin{tikzpicture}[scale =1,information text/.style={rounded corners=7pt,inner sep=2ex}]
- \shadedraw (0,5)[xshift=1.85cm] node[left,text width=10cm, information text,scale=1,left color=red,right color=magenta] {\begin{minipage}{10cm}\bf\color{white} \tikz \draw (0,0) node[fill=black,text width=9.5cm] {\textcolor{white}{La aproximación parte de la relación binomial $\mathsf{\mu\ =\ np}$
- y toma como objetivo la forma $\mathsf{p\ =\ \frac{\mu}{n}}$.}\\
- \vspace{0.3cm}
- \Large{Si $x_1, x_2, \cdots, x_n$ es una muestra aleatoria, en donde $x_i \sim \textit{N}(\mu, \sigma)$ para todo $i$. Entonces Y, definida mediante: $$ \displaystyle{y = \Sigma_{i=1}^n \left(\frac{x_i - \mu}{\sigma}\right)^2}$$}
- posee una distribución Chi-Cuadrado con $n$ grados de libertad, en símbolos: $$Y\ \sim \ \chi^2(n)$$
- \vspace{0.3cm}
- };
- \end{minipage}};
- \end{tikzpicture}\\
- \begin{tikzpicture}[scale=1.2]
- \begin{axis}[legend style={rounded corners,fill=brown!40, visualize as smooth line},legend pos=outer north east, view={45}{35}]
- \foreach \t in {0.6,0.65,0.7,0.75}
- {
- \pgfmathsetmacro{\s}{\t}
- \addplot3[color=red, domain=0:15,samples=45,mesh,very thick] ({\s*cos(deg(x))},{\s*sin(deg(x))},{0.4*x });}
- \draw [green,fill](6,6,21)circle(1.5pt);
- \draw (6,6,21) node[green,left]{\tiny{21}};
- \end{axis}
- \end{tikzpicture}
- %\draw [white] node at (4.3,0.3){\bf{\Large{$\mathbf{\Sigma}(\mathbf{x_k} - \overline{\mathbf{x}})^3 = 0$}}};
- %\begin{axis}[blue, domain=0:30, samples=100, height=5cm, width=10cm, ytick=\empty, xtick=\empty, enlargelimits=false, clip=false]
- %\addplot [very thick, white, domain=-3:3] {gauss1(0,1.2)} ;
- %\addplot [very thick, white, domain=-3:3] {gauss2(0,1.2)} ;
- %\addplot [very thick, white, domain=-3:3] {gauss(0,1)} ;
- %\end{axis}
- %Uncomment the following two lines if you want to have a bibliography1 %\bibliographystyle{alpha} %\bibliography{document} %\begin{thebibliography}{document} %\renewcommand %\refname{BIBLIOGRAFIA} %\bibitem{Baz} \textit{Bazaraa, M.S., J.J. %Jarvis} y \textit{H.D. Sheraly}, %\textit{Programación lineal y flujo de redes}, %Segunda Edición. Limusá, México, DF. 2004. %\end{thebibliography}
- \end{document}
Add Comment
Please, Sign In to add comment