Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 246, in <module>
- dt_multi.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:22
- *********
- ERROR:root:Input X contains NaN.
- LinearRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 297, in <module>
- lr_multi.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_base.py", line 648, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- LinearRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:22
- *********
- ERROR:root:Input X contains NaN.
- LogisticRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 347, in <module>
- logreg_multi.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_logistic.py", line 1196, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- LogisticRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:22
- *********
- ERROR:root:Input X contains NaN.
- KNeighborsClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 398, in <module>
- knn.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neighbors/_classification.py", line 215, in fit
- return self._fit(X, y)
- ^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neighbors/_base.py", line 454, in _fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- KNeighborsClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:22
- *********
- ERROR:root:Input X contains NaN.
- RandomForestClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 447, in <module>
- rf.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_forest.py", line 345, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- RandomForestClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:22
- *********
- ERROR:root:Input X contains NaN.
- MLPClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 495, in <module>
- mlp.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 749, in fit
- return self._fit(X, y, incremental=False)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 437, in _fit
- X, y = self._validate_input(X, y, incremental, reset=first_pass)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 1089, in _validate_input
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- MLPClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:22
- *********
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 547, in <module>
- bagging_classifier.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 337, in fit
- return self._fit(X, y, self.max_samples, sample_weight=sample_weight)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 472, in _fit
- all_results = Parallel(
- ^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 63, in __call__
- return super().__call__(iterable_with_config)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1863, in __call__
- return output if self.return_generator else list(output)
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1792, in _get_sequential_output
- res = func(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 123, in __call__
- return self.function(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 141, in _parallel_build_estimators
- estimator_fit(X_, y, sample_weight=curr_sample_weight)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:22
- *********
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 596, in <module>
- classifier_j48.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:22
- *********
- ERROR:root:Input X contains NaN.
- GradientBoostingClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 766, in <module>
- multi_gb.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_gb.py", line 429, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- GradientBoostingClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:23
- *********
- ERROR:root:Input X contains NaN.
- GaussianNB does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 866, in <module>
- NB_model.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/naive_bayes.py", line 267, in fit
- return self._partial_fit(
- ^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/naive_bayes.py", line 428, in _partial_fit
- X, y = self._validate_data(X, y, reset=first_call)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- GaussianNB does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:23
- *********
- ERROR:root:Input X contains NaN.
- AdaBoostClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 923, in <module>
- AB_model.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_weight_boosting.py", line 126, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- AdaBoostClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:23
- *********
- ERROR:root:Input X contains NaN.
- QuadraticDiscriminantAnalysis does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 974, in <module>
- qda_multi.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/discriminant_analysis.py", line 890, in fit
- X, y = self._validate_data(X, y)
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- QuadraticDiscriminantAnalysis does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:23
- *********
- ERROR:root:Input X contains NaN.
- BernoulliRBM does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 1417, in <module>
- dbn_model.fit(X_train.iloc[train_index], y_train.iloc[train_index])
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/pipeline.py", line 401, in fit
- Xt = self._fit(X, y, **fit_params_steps)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/pipeline.py", line 359, in _fit
- X, fitted_transformer = fit_transform_one_cached(
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/memory.py", line 353, in __call__
- return self.func(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/pipeline.py", line 893, in _fit_transform_one
- res = transformer.fit_transform(X, y, **fit_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/_set_output.py", line 140, in wrapped
- data_to_wrap = f(self, X, *args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 881, in fit_transform
- return self.fit(X, y, **fit_params).transform(X)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neural_network/_rbm.py", line 402, in fit
- X = self._validate_data(X, accept_sparse="csr", dtype=(np.float64, np.float32))
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 565, in _validate_data
- X = check_array(X, input_name="X", **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- BernoulliRBM does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:31
- *********
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 246, in <module>
- dt_multi.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:37
- *********
- ERROR:root:Input X contains NaN.
- LinearRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 297, in <module>
- lr_multi.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_base.py", line 648, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- LinearRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:37
- *********
- ERROR:root:Input X contains NaN.
- LogisticRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 347, in <module>
- logreg_multi.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_logistic.py", line 1196, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- LogisticRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:37
- *********
- ERROR:root:Input X contains NaN.
- KNeighborsClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 398, in <module>
- knn.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neighbors/_classification.py", line 215, in fit
- return self._fit(X, y)
- ^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neighbors/_base.py", line 454, in _fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- KNeighborsClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:37
- *********
- ERROR:root:Input X contains NaN.
- RandomForestClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 447, in <module>
- rf.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_forest.py", line 345, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- RandomForestClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:37
- *********
- ERROR:root:Input X contains NaN.
- MLPClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 495, in <module>
- mlp.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 749, in fit
- return self._fit(X, y, incremental=False)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 437, in _fit
- X, y = self._validate_input(X, y, incremental, reset=first_pass)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 1089, in _validate_input
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- MLPClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:37
- *********
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 547, in <module>
- bagging_classifier.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 337, in fit
- return self._fit(X, y, self.max_samples, sample_weight=sample_weight)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 472, in _fit
- all_results = Parallel(
- ^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 63, in __call__
- return super().__call__(iterable_with_config)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1863, in __call__
- return output if self.return_generator else list(output)
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1792, in _get_sequential_output
- res = func(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 123, in __call__
- return self.function(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 141, in _parallel_build_estimators
- estimator_fit(X_, y, sample_weight=curr_sample_weight)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:37
- *********
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 596, in <module>
- classifier_j48.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:37
- *********
- ERROR:root:Input X contains NaN.
- GradientBoostingClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 766, in <module>
- multi_gb.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_gb.py", line 429, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- GradientBoostingClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:38
- *********
- ERROR:root:Input X contains NaN.
- GaussianNB does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 866, in <module>
- NB_model.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/naive_bayes.py", line 267, in fit
- return self._partial_fit(
- ^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/naive_bayes.py", line 428, in _partial_fit
- X, y = self._validate_data(X, y, reset=first_call)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- GaussianNB does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:38
- *********
- ERROR:root:Input X contains NaN.
- AdaBoostClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 923, in <module>
- AB_model.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_weight_boosting.py", line 126, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- AdaBoostClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:38
- *********
- ERROR:root:Input X contains NaN.
- QuadraticDiscriminantAnalysis does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 974, in <module>
- qda_multi.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/discriminant_analysis.py", line 890, in fit
- X, y = self._validate_data(X, y)
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- QuadraticDiscriminantAnalysis does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:38
- *********
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 246, in <module>
- dt_multi.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:42
- *********
- ERROR:root:Input X contains NaN.
- LinearRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 297, in <module>
- lr_multi.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_base.py", line 648, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- LinearRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:42
- *********
- ERROR:root:Input X contains NaN.
- LogisticRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 347, in <module>
- logreg_multi.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_logistic.py", line 1196, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- LogisticRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:42
- *********
- ERROR:root:Input X contains NaN.
- KNeighborsClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 398, in <module>
- knn.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neighbors/_classification.py", line 215, in fit
- return self._fit(X, y)
- ^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neighbors/_base.py", line 454, in _fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- KNeighborsClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:42
- *********
- ERROR:root:Input X contains NaN.
- RandomForestClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 447, in <module>
- rf.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_forest.py", line 345, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- RandomForestClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:42
- *********
- ERROR:root:Input X contains NaN.
- MLPClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 495, in <module>
- mlp.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 749, in fit
- return self._fit(X, y, incremental=False)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 437, in _fit
- X, y = self._validate_input(X, y, incremental, reset=first_pass)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 1089, in _validate_input
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- MLPClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:42
- *********
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 547, in <module>
- bagging_classifier.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 337, in fit
- return self._fit(X, y, self.max_samples, sample_weight=sample_weight)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 472, in _fit
- all_results = Parallel(
- ^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 63, in __call__
- return super().__call__(iterable_with_config)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1863, in __call__
- return output if self.return_generator else list(output)
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1792, in _get_sequential_output
- res = func(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 123, in __call__
- return self.function(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 141, in _parallel_build_estimators
- estimator_fit(X_, y, sample_weight=curr_sample_weight)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:42
- *********
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 596, in <module>
- classifier_j48.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:42
- *********
- ERROR:root:Input X contains NaN.
- GradientBoostingClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 766, in <module>
- multi_gb.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_gb.py", line 429, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- GradientBoostingClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:43
- *********
- ERROR:root:Input X contains NaN.
- GaussianNB does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 866, in <module>
- NB_model.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/naive_bayes.py", line 267, in fit
- return self._partial_fit(
- ^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/naive_bayes.py", line 428, in _partial_fit
- X, y = self._validate_data(X, y, reset=first_call)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- GaussianNB does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:43
- *********
- ERROR:root:Input X contains NaN.
- AdaBoostClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 923, in <module>
- AB_model.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_weight_boosting.py", line 126, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- AdaBoostClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:43
- *********
- ERROR:root:Input X contains NaN.
- QuadraticDiscriminantAnalysis does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_5.py", line 974, in <module>
- qda_multi.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/discriminant_analysis.py", line 890, in fit
- X, y = self._validate_data(X, y)
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- QuadraticDiscriminantAnalysis does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 16 Jun 2024 19:43
- *********
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement