Advertisement
ProgNeo

Untitled

Feb 13th, 2023
812
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 1.21 KB | None | 0 0
  1. import cv2
  2. import numpy as np
  3. import tensorflow as tf
  4.  
  5. # Load YOLOv5 model
  6. model = YOLOv5()
  7. model.load_weights('yolov5.h5')
  8.  
  9. # Load LSTM model
  10. lstm_model = tf.keras.models.load_model('lstm.h5')
  11.  
  12. # Load video file
  13. cap = cv2.VideoCapture('video.mp4')
  14.  
  15. # Initialize input sequence for LSTM
  16. input_sequence = np.zeros((1, sequence_length, input_size))
  17.  
  18. # Loop through video frames
  19. while True:
  20.     ret, frame = cap.read()
  21.     if not ret:
  22.         break
  23.  
  24.     # Run YOLOv5 on frame
  25.     boxes, labels, scores = model.predict(frame)
  26.  
  27.     # Extract information from bounding boxes
  28.     object_features = extract_features_from_boxes(boxes, labels)
  29.  
  30.     # Update input sequence for LSTM
  31.     input_sequence[:, :-1, :] = input_sequence[:, 1:, :]
  32.     input_sequence[:, -1, :] = object_features
  33.  
  34.     # Predict future object locations with LSTM
  35.     future_object_locations = lstm_model.predict(input_sequence)
  36.  
  37.     # Draw bounding boxes and predicted future locations on frame
  38.     draw_boxes_and_predictions(frame, boxes, future_object_locations)
  39.  
  40.     # Display updated frame
  41.     cv2.imshow('frame', frame)
  42.     if cv2.waitKey(1) & 0xFF == ord('q'):
  43.         break
  44.  
  45. # Clean up
  46. cap.release()
  47. cv2.destroyAllWindows()
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement