Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import cv2
- import numpy as np
- import tensorflow as tf
- # Load YOLOv5 model
- model = YOLOv5()
- model.load_weights('yolov5.h5')
- # Load LSTM model
- lstm_model = tf.keras.models.load_model('lstm.h5')
- # Load video file
- cap = cv2.VideoCapture('video.mp4')
- # Initialize input sequence for LSTM
- input_sequence = np.zeros((1, sequence_length, input_size))
- # Loop through video frames
- while True:
- ret, frame = cap.read()
- if not ret:
- break
- # Run YOLOv5 on frame
- boxes, labels, scores = model.predict(frame)
- # Extract information from bounding boxes
- object_features = extract_features_from_boxes(boxes, labels)
- # Update input sequence for LSTM
- input_sequence[:, :-1, :] = input_sequence[:, 1:, :]
- input_sequence[:, -1, :] = object_features
- # Predict future object locations with LSTM
- future_object_locations = lstm_model.predict(input_sequence)
- # Draw bounding boxes and predicted future locations on frame
- draw_boxes_and_predictions(frame, boxes, future_object_locations)
- # Display updated frame
- cv2.imshow('frame', frame)
- if cv2.waitKey(1) & 0xFF == ord('q'):
- break
- # Clean up
- cap.release()
- cv2.destroyAllWindows()
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement