Advertisement
algorithmuscanorj

Untitled

Jan 3rd, 2013
437
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 5.04 KB | None | 0 0
  1. % On line compiler --> http://latex.informatik.uni-halle.de/latex-online/latex.php
  2. \documentclass[11pt]{article}
  3. \usepackage[latin1]{inputenc}
  4. \usepackage{dsfont}
  5. \parindent0em
  6. \usepackage{graphicx}
  7.  
  8. \begin{document}
  9.  
  10. \abstract{Indices Algebra, regardless the context about Tensor Calculus}\footnote{Compiled with the on-line service at: http://latex.informatik.uni-halle.de/latex-online/latex.php. As every draft for a translation from foreign languages, this one missed lot of text in Spanish by the author, but he hopes to deliver the main ideas and relevant considerations of the matters treated here. By: R. J. Cano, Jan 3 2013 13:56 VET}
  11. \subsubsection{Developing useful identities:}
  12. About $(A + B)^{2} = A^{2} + 2AB + B^2$. Motivation: It's needed when writing down the Lagrangian for a multiple plane pendulum (double, triple, ....)\\
  13. \'x$_{{i}}^{2}=[\sum _{j=1}^{i}L_{{j}}\cos \left( \theta_{{j}} \right)\theta^{'}_{{j}}]^{2}$\newline
  14. \'y$_{{i}}^{2}=[\sum _{j=1}^{i}L_{{j}}\sin \left( \theta_{{j}} \right)\theta^{'}_{{j}}]^{2}$\newline
  15.  
  16. Abstraction for the general term: $L_{{j}} F \left( \theta_{{j}} \right)\theta^{'}_{{j}}$ \\
  17. $A_{j} = L_{{j}} F \left( \theta_{{j}} \right)$\\
  18. $B_{j} = \theta^{'}_{{j}}$ \\
  19. Now, additionally: \\
  20. $F \left( \theta_{{j}} \right)$ = Def. as either sine or cosine depending on j. \\
  21.  
  22. The problem is: $\left(A_{1}B_{1} + A_{2}B_{2} + ... +A_{i-1}B_{i-1} + A_{i}B_{i} \right)^{2} = $ ???; then lets build a "multiplication table":
  23. (Please see above at beginning)
  24. \begin{table}
  25. \begin{center}
  26. \begin{tabular}[t]{||l||l|l|l|l|l|l||}
  27. \hline\hline
  28. %empieza
  29.  & $A_{1}B_{1}$ & $A_{2}B_{2}$ & $A_{3}B_{3}$ & ... & $A_{(i-1)}B_{(i-1)}$ & $A_{i}B_{i}$ \\
  30. \hline\hline
  31. $A_{1}B_{1}$ & $A_{1}^{2}B_{1}^{2}$ & . & $A_{1}B_{1}A_{3}B_{3}$ & . & . & .  \\
  32. \hline
  33. $A_{2}B_{2}$ & . & $A_{2}^{2}B_{2}^{2}$ & . & . & . & .  \\
  34. \hline
  35. $A_{3}B_{3}$ & $A_{3}B_{3}A_{1}B_{1}$ & . & $A_{3}^{2}B_{3}^{2}$ & . & $A_{3}B_{3}A_{(i-1)}B_{(i-1)}$ & .  \\
  36. \hline
  37. ... & . & . & . & *** & . & .  \\
  38. \hline
  39. $A_{(i-1)}B_{(i-1)}$ & . & . & $A_{(i-1)}B_{(i-1)}A_{3}B_{3}$ & . & $A_{(i-1)}^{2}B_{(i-1)}^{2}$ & . \\
  40. \hline
  41. $A_{i}B_{i}$ & . & . & . & . & . &  $A_{i}^{2}B_{i}^{2}$ \\
  42. %termina
  43. \hline\hline
  44. \end{tabular}
  45. \end{center}
  46. \end{table}
  47.  
  48. We might observe that there is $i^{2}$ elements in total for such table: i cols by i rows, exactly i of them in the diagonal upon the fact that due the commutative property of the multiplication in the real numbers, viewed as matrix such table is symmetrical, a key fact underlying to the following result regarding the proper way of counting the distinct kind of objects present in the table: \newline
  49.  
  50. $i^{2} = i + 2($"something")\newline
  51.  
  52. Moreover, developing the product:\newline
  53.  
  54. $(\sum _{j=1}^{i}A_{j}B_{j})^{2} = $\newline\newline\newline
  55. $\sum _{j=1}^{i}A_{j}^{2}B_{j}^{2}$\newline\newline
  56. $ + 2(A_{1}B_{1})(A_{2}B_{2}) + 2(A_{1}B_{1})(A_{3}B_{3}) + ... + 2(A_{1}B_{1})(A_{(i-1)}B_{(i-1)}) + 2(A_{1}B_{1})(A_{i}B_{i})$\newline
  57. $ + 2(A_{2}B_{2})(A_{3}B_{3}) + ... + 2(A_{2}B_{2})(A_{(i-1)}B_{(i-1)}) + 2(A_{2}B_{2})(A_{i}B_{i})$\newline
  58. $ + 2(A_{3}B_{3})(A_{(i-1)}B_{(i-1)}) + 2(A_{3}B_{3})(A_{i}B_{i})$\newline
  59. .\newline
  60. .\newline
  61. .\newline
  62. $ + 2(A_{(i-2)}B_{(i-2)})(A_{(i-1)}B_{(i-1)}) + 2(A_{(i-2)}B_{(i-2)})(A_{(i)}B_{(i)})$\newline
  63. $ + 2(A_{(i-1)}B_{(i-1)})(A_{i}B_{i})$\newline
  64.  
  65. What doesn't appears over the diagonal, belongs to a multiple sum of the kind: $2(A_{k}B_{k})(A_{s}B_{s})$ where "k" runs from 1 until (i-1) and "s" runs from (k+1) until i.\newline\newline
  66.  
  67. Convinced of the previously described it should be true that:\newline
  68.  
  69. %\begin{table}
  70. %\begin{center}
  71. %\begin{tabular}[t]{|l|}
  72. %\hline
  73. $(\sum _{j=1}^{i}A_{j}B_{j})^{2} = \sum _{j=1}^{i}A_{j}^{2}B_{j}^{2} + 2(\sum_{k=1}^{(i-1)}\sum_{s=k+1}^{i}A_{k}B_{k}A_{s}B_{s})$ \\
  74. %\hline
  75. %\end{tabular}
  76. %\end{center}
  77. %\end{table}
  78. \newline
  79.  
  80. Being this last expression necessarily a general identity in Algebra due to the following: Making i=2 and $B_{j}=1$ for all j, then we will get the well known elementary formula: \newline\newline
  81.  
  82. (i=2, $B_{j}=1$)\\
  83. $(\sum _{j=1}^{2}A_{j}B_{j})^{2} = \sum _{j=1}^{2}A_{j}^{2}B_{j}^{2} + 2(\sum_{k=1}^{(1)}\sum_{s=2}^{2}A_{k}B_{k}A_{s}B_{s})$ \\
  84. $[\sum _{j=1}^{2}A_{j}(1)]^{2} = \sum _{j=1}^{2}A_{j}^{2}(1)^{2} + 2[\sum_{k=1}^{(1)}\sum_{s=2}^{2}A_{k}A_{s}(1)^{2}]$ \\
  85. $(\sum _{j=1}^{2}A_{j})^{2} = \sum _{j=1}^{2}A_{j}^{2} + 2A_{1}A_{2}$ \\ \\
  86. $(A_{1} + A_{2})^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}$ \newpage
  87.  
  88. And also as sub-consequence: \newline
  89.  
  90. \begin{center}
  91. $i^{2} = i + 2($"Something") \newline
  92. \end{center}
  93.  
  94. Which would become this other:
  95.  
  96. $\\$
  97. $1^{st}$ form: $N^{2} = N + 2\sum_{k=1}^{(N-1)}\sum_{s=k+1}^{N} $\\ \\
  98. $2^{nd}$ form: $N^{2} = N + 2\sum_{k=1}^{(N-1)}$ \\ \\
  99. $3^{rd}$ form: $N^{2} = \sum_{k=1}^{(N-1)} + \sum_{k=1}^{N}$ \\ \\
  100.  
  101. Note: Viewed as operators, the summation sigmas should be understood such that in the absence of operands (namely "general terms") at their right, they are operating on the unit (the possibly called: "trivial operand", or assumed "ad priori").  
  102. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement