Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import re
- import zlib
- import cv2
- from scapy.all import *
- pictures_directory = "/home/justin/pic_carver/pictures"
- faces_directory= "/home/justin/pic_carver/faces"
- pcap_file= "bhp.pcap"
- def http_assembler(pcap_file):
- carved_images = 0
- faces_detected = 0
- a = rdpcap(pcap_file)
- sessions= a.sessions()
- for session in sessions:
- http_payload = ""
- for packet in sessions[session]:
- try:
- if packet[TCP].dport == 80 or packet[TCP].sport == 80:
- # reassemble the stream
- http_payload += str(packet[TCP].payload)
- except:
- pass
- headers = get_http_headers(http_payload)
- if headers is None:
- continue
- image,image_type = extract_image(headers,http_payload)
- if image is not None and image_type is not None:
- file_name = "%s-pic_carver_%d.%s" %(pcap_file,carved_images,image_type)
- fd = open("%s/%s" %(pictures_directory,file_name),"wb")
- fd.write(image)
- fd.close()
- carved_images += 1
- try:
- result = face_detect("%s/%s" %(pictures_directory,file_name),file_name)
- if result is True:
- faces_detected += 1
- except:
- pass
- return carved_images, faces_detected
- carved_images, faces_detected = http_assembler(pcap_file)
- print ("Extracted: %d images" % carved_images)
- print ("Detected: %d faces" % faces_detected)
- def get_http_headers(http_payload):
- try:
- headers_raw = http_payload[:http_payload.index("\r\n\r\n")+2]
- # break out the headers
- headers = dict(re.findall(r"(?P<'name>.*?): (?P<value>.*?)\r\n",headers_raw))
- except:
- return None
- if "Content-Type" not in headers:
- return None
- return headers
- def extract_image(headers,http_payload):
- image= None
- image_type = None
- try:
- if "image" in headers['Content-Type']:
- image_type = headers['Content-Type'].split("/")[1]
- image = http_payload[http_payload.index("\r\n\r\n")+4:]
- # if we detect compression decompress the image
- try:
- if "Content-Encoding" in headers.keys():
- if headers['Content-Encoding'] == "gzip":
- image = zlib.decompress(image, 16+zlib.MAX_WBITS)
- elif headers['Content-Encoding'] == "deflate":
- image = zlib.decompress(image)
- except:
- pass
- except:
- return None,None
- return image,image_type
- def face_detect(path,file_name):
- img= cv2.imread(path)
- cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
- rect= cascade.detectMultiScale(img, 1.3, 4, cv2.cv.CV_HAAR_SCALE_IMAGE, (20,20))
- if len(rects) == 0:
- return False
- rects[:, 2:] += rects[:, :2]
- # highlight the faces in the image
- for x1,y1,x2,y2 in rects:
- cv2.rectangle(img,(x1,y1),(x2,y2),(127,255,0),2)
- cv2.imwrite("%s/%s-%s" % (faces_directory,pcap_file,file_name),img)
- return True
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement