Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import numpy as np
- import pandas as pd
- import matplotlib.pyplot as plt
- import seaborn as sns
- from scipy.optimize import root, minimize
- def equation(a, x, eps):
- return a * (1 - x) - x * np.exp(-eps * x)
- def jacobian(a, x, eps):
- df_dx = -a - np.exp(-eps * x) * (1 - eps * x)
- return df_dx
- def is_stable(stationary_points, stability):
- stable = []
- not_stable = []
- for i in range(len(stationary_points)):
- if stability[i] == 'b':
- stable.append(stationary_points[i])
- not_stable.append(np.nan)
- else:
- not_stable.append(stationary_points[i])
- stable.append(np.nan)
- stable = np.array(stable)
- not_stable = np.array(not_stable)
- return stable, not_stable
- def find_min(x_values, alpha, epsilon):
- min_ = []
- for i in range(1, len(x_values)-2):
- d2V_dx2_prev = (V(x_values[i-1], alpha, epsilon) - 2*V(x_values[i], alpha, epsilon) + V(x_values[i+1], alpha, epsilon))/(dx*dx)
- d2V_dx2_next = (V(x_values[i], alpha, epsilon) - 2*V(x_values[i+1], alpha, epsilon) + V(x_values[i+2], alpha, epsilon))/(dx*dx)
- if d2V_dx2_prev * d2V_dx2_next < 0:
- min_.append(x_values[i])
- return min_
- def V(x, alpha, epsilon):
- eq = -alpha*(x - 0.5*x**2) + (-x*epsilon*np.exp(-epsilon*x) - np.exp(-epsilon*x))/(epsilon**2)
- return eq
- def alpha_st(x, epsilon):
- eq = -(x*np.exp(-epsilon*x))/(-1.0+x)
- return eq
- epsilons = np.array([0.01, 0.1, 1, 2, 4, 6])
- X = np.linspace(0, 1, 1000)
- colors = [
- "#FF5733", "#33FF57", "#5733FF", "#FFFF33", "#33FFFF",
- "#FF33FF", "#FF5733", "#33FF57", "#5733FF", "#FFFF33",
- "#33FFFF", "#FF33FF", "#FF5733", "#33FF57", "#5733FF",
- "#FFFF33", "#33FFFF", "#FF33FF", "#FF5733", "#33FF57"
- ]
- Stability = []
- stationary_points = []
- for eps in epsilons:
- stationary_points_eps = []
- Stability_eps = []
- for x in X:
- result = root(equation, x0=[0.1], args=(x, eps))
- if result.success:
- stationary_point = result.x
- stability = 'b' if jacobian(stationary_point, x, eps) < 0 else 'r'
- Stability_eps.append(stability)
- stationary_point = result.x
- stationary_points_eps.append(stationary_point[0])
- else:
- stationary_points_eps.append(np.nan)
- Stability_eps.append('white')
- stationary_points.append(stationary_points_eps)
- Stability.append(Stability_eps)
- stationary_points = np.array(stationary_points)
- Stability = np.array(Stability)
- plt.figure(figsize=(15, 8))
- for i, eps in enumerate(epsilons):
- plt.plot(stationary_points[i], X, color=colors[i], label=f'eps={np.round(eps, 2)}')
- plt.xlabel(r'$\alpha$')
- plt.ylabel('X')
- plt.title(r'$\alpha (1 - x) x \exp(- \epsilon x) = 0$', size=20)
- plt.legend()
- plt.xlim(0, 0.5)
- plt.grid(True)
- plt.show()
- plt.figure(figsize=(15, 8))
- plt.plot(stationary_points[3], X, color=colors[3], lw=1.75, label=f'eps={np.round(epsilons[3], 2)}')
- stable, not_stable = is_stable(stationary_points[3], Stability[3])
- plt.plot(stable, X, color='b', lw=1, label=f'eps={np.round(epsilons[3], 2)}, стікий стан')
- plt.plot(not_stable, X, color='red', lw=1, label=f'eps={np.round(epsilons[3], 2)}, не стійкий стан')
- plt.xlabel(r'$\alpha$')
- plt.ylabel('X')
- plt.title(r'$\alpha (1 - x) x \exp(- \epsilon x) = 0$', size=20)
- plt.legend()
- plt.xlim(0, 0.5)
- plt.grid(True)
- plt.show()
- plt.figure(figsize=(15, 8))
- plt.plot(stationary_points[-1], X, color=colors[5], lw=1.75, label=f'eps={np.round(epsilons[-1], 2)}')
- stable, not_stable = is_stable(stationary_points[-1], Stability[-1])
- plt.plot(stable, X, color='b', lw=1, label=f'eps={np.round(epsilons[-1], 2)}, стікий стан')
- plt.plot(not_stable, X, color='red', lw=1, label=f'eps={np.round(epsilons[-1], 2)}, не стійкий стан')
- plt.plot()
- plt.xlabel(r'$\alpha$')
- plt.ylabel('X')
- plt.title(r'$\alpha (1 - x) x \exp(- \epsilon x) = 0$', size=20)
- plt.legend()
- plt.xlim(0, 0.1)
- plt.grid(True)
- plt.show()
- dx = 10**-4
- x_values = np.arange(0, 1, dx)
- alphas = [0.01, 0.025, 0.04, 0.06, 0.08, 0.09]
- num_plots = len(alphas)
- num_rows = 2
- num_cols = 3
- fig, axes = plt.subplots(num_rows, num_cols, figsize=(12, 10))
- for i, alpha in enumerate(alphas):
- row = i // num_cols
- col = i % num_cols
- ax = axes[row, col]
- V_values = [V(x, alpha, 6) for x in x_values]
- ax.plot(x_values, V_values, label=f'alpha = {alpha}')
- ax.set_xlabel('$x$')
- ax.set_ylabel('$V(x)$')
- ax.set_title(f'$V(x): \epsilon=6$')
- ax.set_xlim(0, 1)
- ax.legend()
- ax.grid(True)
- plt.tight_layout()
- plt.show()
- dx = 10**-4
- x_values = np.arange(0, 1, dx)
- min_per_epsilon = {}
- for epsilon in np.arange(3, 6.1, 0.1):
- alpha_values = []
- for alpha in np.arange(0, 0.2, 0.01):
- V_values = [V(x, alpha, epsilon) for x in x_values]
- min_ = find_min(x_values, alpha, epsilon)
- if len(min_) == 2:
- V_min = [V(x, alpha, epsilon) for x in min_]
- if np.abs(V_min[0] - V_min[1]) < 0.001:
- alpha_values.append(alpha)
- min_per_epsilon[epsilon] = alpha_values
- average_epsilon_per_alpha = {}
- for epsilon, alpha_values in min_per_epsilon.items():
- for alpha in alpha_values:
- if alpha not in average_epsilon_per_alpha:
- average_epsilon_per_alpha[alpha] = []
- average_epsilon_per_alpha[alpha].append(epsilon)
- for alpha, epsilons in average_epsilon_per_alpha.items():
- average_epsilon = np.mean(epsilons)
- dx = 0.00001
- epsilon_1_list = []
- a2_1_list = []
- epsilon_2_list = []
- a2_2_list = []
- for epsilon in np.arange(3, 6.1, 0.1):
- for x in np.arange(0.00001, 0.99999, dx):
- a1 = alpha_st(x - dx, epsilon)
- a2 = alpha_st(x, epsilon)
- a3 = alpha_st(x + dx, epsilon)
- if a1 < a2 and a3 < a2:
- epsilon_1_list.append(epsilon)
- a2_1_list.append(a2)
- if a1 > a2 and a3 > a2:
- epsilon_2_list.append(epsilon)
- a2_2_list.append(a2)
- break
- alphas = []
- average_epsilons = []
- for alpha, epsilons in average_epsilon_per_alpha.items():
- alphas.append(alpha)
- average_epsilons.append(np.mean(epsilons))
- plt.figure(figsize=(15, 8))
- plt.plot(alphas, average_epsilons, marker='o', linestyle='-')
- plt.plot(a2_1_list, epsilon_1_list, 'o', linestyle='-', label='Не стійкий стан')
- plt.plot(a2_2_list, epsilon_2_list, 'o', linestyle='-', label='Стійкий стан')
- plt.legend()
- plt.xlabel(r'$\alpha$')
- plt.ylabel(r'$\epsilon$')
- plt.title('Фазова діаграма')
- plt.grid(True)
- plt.show()
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement