Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- # Python modul vo koj se implementirani algoritmite za neinformirano i informirano prebaruvanje
- # ______________________________________________________________________________________________
- # Improtiranje na dopolnitelno potrebni paketi za funkcioniranje na kodovite
- import sys
- import bisect
- infinity = float('inf') # sistemski definirana vrednost za beskonecnost
- # ______________________________________________________________________________________________
- # Definiranje na pomosni strukturi za cuvanje na listata na generirani, no neprovereni jazli
- class Queue:
- """Queue is an abstract class/interface. There are three types:
- Stack(): A Last In First Out Queue.
- FIFOQueue(): A First In First Out Queue.
- PriorityQueue(order, f): Queue in sorted order (default min-first).
- Each type supports the following methods and functions:
- q.append(item) -- add an item to the queue
- q.extend(items) -- equivalent to: for item in items: q.append(item)
- q.pop() -- return the top item from the queue
- len(q) -- number of items in q (also q.__len())
- item in q -- does q contain item?
- Note that isinstance(Stack(), Queue) is false, because we implement stacks
- as lists. If Python ever gets interfaces, Queue will be an interface."""
- def __init__(self):
- raise NotImplementedError
- def extend(self, items):
- for item in items:
- self.append(item)
- def Stack():
- """A Last-In-First-Out Queue."""
- return []
- class FIFOQueue(Queue):
- """A First-In-First-Out Queue."""
- def __init__(self):
- self.A = []
- self.start = 0
- def append(self, item):
- self.A.append(item)
- def __len__(self):
- return len(self.A) - self.start
- def extend(self, items):
- self.A.extend(items)
- def pop(self):
- e = self.A[self.start]
- self.start += 1
- if self.start > 5 and self.start > len(self.A) / 2:
- self.A = self.A[self.start:]
- self.start = 0
- return e
- def __contains__(self, item):
- return item in self.A[self.start:]
- class PriorityQueue(Queue):
- """A queue in which the minimum (or maximum) element (as determined by f and
- order) is returned first. If order is min, the item with minimum f(x) is
- returned first; if order is max, then it is the item with maximum f(x).
- Also supports dict-like lookup. This structure will be most useful in informed searches"""
- def __init__(self, order=min, f=lambda x: x):
- self.A = []
- self.order = order
- self.f = f
- def append(self, item):
- bisect.insort(self.A, (self.f(item), item))
- def __len__(self):
- return len(self.A)
- def pop(self):
- if self.order == min:
- return self.A.pop(0)[1]
- else:
- return self.A.pop()[1]
- def __contains__(self, item):
- return any(item == pair[1] for pair in self.A)
- def __getitem__(self, key):
- for _, item in self.A:
- if item == key:
- return item
- def __delitem__(self, key):
- for i, (value, item) in enumerate(self.A):
- if item == key:
- self.A.pop(i)
- # ______________________________________________________________________________________________
- # Definiranje na klasa za strukturata na problemot koj ke go resavame so prebaruvanje
- # Klasata Problem e apstraktna klasa od koja pravime nasleduvanje za definiranje na osnovnite karakteristiki
- # na sekoj eden problem sto sakame da go resime
- class Problem:
- """The abstract class for a formal problem. You should subclass this and
- implement the method successor, and possibly __init__, goal_test, and
- path_cost. Then you will create instances of your subclass and solve them
- with the various search functions."""
- def __init__(self, initial, goal=None):
- """The constructor specifies the initial state, and possibly a goal
- state, if there is a unique goal. Your subclass's constructor can add
- other arguments."""
- self.initial = initial
- self.goal = goal
- def successor(self, state):
- """Given a state, return a dictionary of {action : state} pairs reachable
- from this state. If there are many successors, consider an iterator
- that yields the successors one at a time, rather than building them
- all at once. Iterators will work fine within the framework. Yielding is not supported in Python 2.7"""
- raise NotImplementedError
- def actions(self, state):
- """Given a state, return a list of all actions possible from that state"""
- raise NotImplementedError
- def result(self, state, action):
- """Given a state and action, return the resulting state"""
- raise NotImplementedError
- def goal_test(self, state):
- """Return True if the state is a goal. The default method compares the
- state to self.goal, as specified in the constructor. Implement this
- method if checking against a single self.goal is not enough."""
- return state == self.goal
- def path_cost(self, c, state1, action, state2):
- """Return the cost of a solution path that arrives at state2 from
- state1 via action, assuming cost c to get up to state1. If the problem
- is such that the path doesn't matter, this function will only look at
- state2. If the path does matter, it will consider c and maybe state1
- and action. The default method costs 1 for every step in the path."""
- return c + 1
- def value(self):
- """For optimization problems, each state has a value. Hill-climbing
- and related algorithms try to maximize this value."""
- raise NotImplementedError
- # ______________________________________________________________________________
- # Definiranje na klasa za strukturata na jazel od prebaruvanje
- # Klasata Node ne se nasleduva
- class Node:
- """A node in a search tree. Contains a pointer to the parent (the node
- that this is a successor of) and to the actual state for this node. Note
- that if a state is arrived at by two paths, then there are two nodes with
- the same state. Also includes the action that got us to this state, and
- the total path_cost (also known as g) to reach the node. Other functions
- may add an f and h value; see best_first_graph_search and astar_search for
- an explanation of how the f and h values are handled. You will not need to
- subclass this class."""
- def __init__(self, state, parent=None, action=None, path_cost=0):
- "Create a search tree Node, derived from a parent by an action."
- self.state = state
- self.parent = parent
- self.action = action
- self.path_cost = path_cost
- self.depth = 0
- if parent:
- self.depth = parent.depth + 1
- def __repr__(self):
- return "<Node %s>" % (self.state,)
- def __lt__(self, node):
- return self.state < node.state
- def expand(self, problem):
- "List the nodes reachable in one step from this node."
- return [self.child_node(problem, action)
- for action in problem.actions(self.state)]
- def child_node(self, problem, action):
- "Return a child node from this node"
- next = problem.result(self.state, action)
- return Node(next, self, action,
- problem.path_cost(self.path_cost, self.state,
- action, next))
- def solution(self):
- "Return the sequence of actions to go from the root to this node."
- return [node.action for node in self.path()[1:]]
- def solve(self):
- "Return the sequence of states to go from the root to this node."
- return [node.state for node in self.path()[0:]]
- def path(self):
- "Return a list of nodes forming the path from the root to this node."
- x, result = self, []
- while x:
- result.append(x)
- x = x.parent
- return list(reversed(result))
- # We want for a queue of nodes in breadth_first_search or
- # astar_search to have no duplicated states, so we treat nodes
- # with the same state as equal. [Problem: this may not be what you
- # want in other contexts.]
- def __eq__(self, other):
- return isinstance(other, Node) and self.state == other.state
- def __hash__(self):
- return hash(self.state)
- # ________________________________________________________________________________________________________
- #Neinformirano prebaruvanje vo ramki na drvo
- #Vo ramki na drvoto ne razresuvame jamki
- def tree_search(problem, fringe):
- """Search through the successors of a problem to find a goal.
- The argument fringe should be an empty queue."""
- fringe.append(Node(problem.initial))
- while fringe:
- node = fringe.pop()
- if problem.goal_test(node.state):
- return node
- fringe.extend(node.expand(problem))
- return None
- def breadth_first_tree_search(problem):
- "Search the shallowest nodes in the search tree first."
- return tree_search(problem, FIFOQueue())
- def depth_first_tree_search(problem):
- "Search the deepest nodes in the search tree first."
- return tree_search(problem, Stack())
- # ________________________________________________________________________________________________________
- #Neinformirano prebaruvanje vo ramki na graf
- #Osnovnata razlika e vo toa sto ovde ne dozvoluvame jamki t.e. povtoruvanje na sostojbi
- def graph_search(problem, fringe):
- """Search through the successors of a problem to find a goal.
- The argument fringe should be an empty queue.
- If two paths reach a state, only use the best one."""
- closed = {}
- fringe.append(Node(problem.initial))
- while fringe:
- node = fringe.pop()
- if problem.goal_test(node.state):
- return node
- if node.state not in closed:
- closed[node.state] = True
- fringe.extend(node.expand(problem))
- return None
- def breadth_first_graph_search(problem):
- "Search the shallowest nodes in the search tree first."
- return graph_search(problem, FIFOQueue())
- def depth_first_graph_search(problem):
- "Search the deepest nodes in the search tree first."
- return graph_search(problem, Stack())
- def uniform_cost_search(problem):
- "Search the nodes in the search tree with lowest cost first."
- return graph_search(problem, PriorityQueue(lambda a, b: a.path_cost < b.path_cost))
- def depth_limited_search(problem, limit=50):
- "depth first search with limited depth"
- def recursive_dls(node, problem, limit):
- "helper function for depth limited"
- cutoff_occurred = False
- if problem.goal_test(node.state):
- return node
- elif node.depth == limit:
- return 'cutoff'
- else:
- for successor in node.expand(problem):
- result = recursive_dls(successor, problem, limit)
- if result == 'cutoff':
- cutoff_occurred = True
- elif result != None:
- return result
- if cutoff_occurred:
- return 'cutoff'
- else:
- return None
- # Body of depth_limited_search:
- return recursive_dls(Node(problem.initial), problem, limit)
- def iterative_deepening_search(problem):
- for depth in xrange(sys.maxint):
- result = depth_limited_search(problem, depth)
- if result is not 'cutoff':
- return result
- # ________________________________________________________________________________________________________
- #Pomosna funkcija za informirani prebaruvanja
- #So pomos na ovaa funkcija gi keshirame rezultatite od funkcijata na evaluacija
- def memoize(fn, slot=None):
- """Memoize fn: make it remember the computed value for any argument list.
- If slot is specified, store result in that slot of first argument.
- If slot is false, store results in a dictionary."""
- if slot:
- def memoized_fn(obj, *args):
- if hasattr(obj, slot):
- return getattr(obj, slot)
- else:
- val = fn(obj, *args)
- setattr(obj, slot, val)
- return val
- else:
- def memoized_fn(*args):
- if not memoized_fn.cache.has_key(args):
- memoized_fn.cache[args] = fn(*args)
- return memoized_fn.cache[args]
- memoized_fn.cache = {}
- return memoized_fn
- # ________________________________________________________________________________________________________
- #Informirano prebaruvanje vo ramki na graf
- def best_first_graph_search(problem, f):
- """Search the nodes with the lowest f scores first.
- You specify the function f(node) that you want to minimize; for example,
- if f is a heuristic estimate to the goal, then we have greedy best
- first search; if f is node.depth then we have breadth-first search.
- There is a subtlety: the line "f = memoize(f, 'f')" means that the f
- values will be cached on the nodes as they are computed. So after doing
- a best first search you can examine the f values of the path returned."""
- f = memoize(f, 'f')
- node = Node(problem.initial)
- if problem.goal_test(node.state):
- return node
- frontier = PriorityQueue(min, f)
- frontier.append(node)
- explored = set()
- while frontier:
- node = frontier.pop()
- if problem.goal_test(node.state):
- return node
- explored.add(node.state)
- for child in node.expand(problem):
- if child.state not in explored and child not in frontier:
- frontier.append(child)
- elif child in frontier:
- incumbent = frontier[child]
- if f(child) < f(incumbent):
- del frontier[incumbent]
- frontier.append(child)
- return None
- def greedy_best_first_graph_search(problem, h=None):
- "Greedy best-first search is accomplished by specifying f(n) = h(n)"
- h = memoize(h or problem.h, 'h')
- return best_first_graph_search(problem, h)
- def astar_search(problem, h=None):
- "A* search is best-first graph search with f(n) = g(n)+h(n)."
- h = memoize(h or problem.h, 'h')
- return best_first_graph_search(problem, lambda n: n.path_cost + h(n))
- # ________________________________________________________________________________________________________
- #Dopolnitelni prebaruvanja
- #Recursive_best_first_search e implementiran
- #Kako zadaca za studentite da gi implementiraat SMA* i IDA*
- def recursive_best_first_search(problem, h=None):
- h = memoize(h or problem.h, 'h')
- def RBFS(problem, node, flimit):
- if problem.goal_test(node.state):
- return node, 0 # (The second value is immaterial)
- successors = node.expand(problem)
- if len(successors) == 0:
- return None, infinity
- for s in successors:
- s.f = max(s.path_cost + h(s), node.f)
- while True:
- # Order by lowest f value
- successors.sort(key=lambda x: x.f)
- best = successors[0]
- if best.f > flimit:
- return None, best.f
- if len(successors) > 1:
- alternative = successors[1].f
- else:
- alternative = infinity
- result, best.f = RBFS(problem, best, min(flimit, alternative))
- if result is not None:
- return result, best.f
- node = Node(problem.initial)
- node.f = h(node)
- result, bestf = RBFS(problem, node, infinity)
- return result
- # Graphs and Graph Problems
- import math
- def distance(a, b):
- """The distance between two (x, y) points."""
- return math.hypot((a[0] - b[0]), (a[1] - b[1]))
- class Graph:
- """A graph connects nodes (verticies) by edges (links). Each edge can also
- have a length associated with it. The constructor call is something like:
- g = Graph({'A': {'B': 1, 'C': 2})
- this makes a graph with 3 nodes, A, B, and C, with an edge of length 1 from
- A to B, and an edge of length 2 from A to C. You can also do:
- g = Graph({'A': {'B': 1, 'C': 2}, directed=False)
- This makes an undirected graph, so inverse links are also added. The graph
- stays undirected; if you add more links with g.connect('B', 'C', 3), then
- inverse link is also added. You can use g.nodes() to get a list of nodes,
- g.get('A') to get a dict of links out of A, and g.get('A', 'B') to get the
- length of the link from A to B. 'Lengths' can actually be any object at
- all, and nodes can be any hashable object."""
- def __init__(self, dict=None, directed=True):
- self.dict = dict or {}
- self.directed = directed
- if not directed:
- self.make_undirected()
- def make_undirected(self):
- """Make a digraph into an undirected graph by adding symmetric edges."""
- for a in list(self.dict.keys()):
- for (b, dist) in self.dict[a].items():
- self.connect1(b, a, dist)
- def connect(self, A, B, distance=1):
- """Add a link from A and B of given distance, and also add the inverse
- link if the graph is undirected."""
- self.connect1(A, B, distance)
- if not self.directed:
- self.connect1(B, A, distance)
- def connect1(self, A, B, distance):
- """Add a link from A to B of given distance, in one direction only."""
- self.dict.setdefault(A, {})[B] = distance
- def get(self, a, b=None):
- """Return a link distance or a dict of {node: distance} entries.
- .get(a,b) returns the distance or None;
- .get(a) returns a dict of {node: distance} entries, possibly {}."""
- links = self.dict.setdefault(a, {})
- if b is None:
- return links
- else:
- return links.get(b)
- def nodes(self):
- """Return a list of nodes in the graph."""
- return list(self.dict.keys())
- def UndirectedGraph(dict=None):
- """Build a Graph where every edge (including future ones) goes both ways."""
- return Graph(dict=dict, directed=False)
- def RandomGraph(nodes=list(range(10)), min_links=2, width=400, height=300,
- curvature=lambda: random.uniform(1.1, 1.5)):
- """Construct a random graph, with the specified nodes, and random links.
- The nodes are laid out randomly on a (width x height) rectangle.
- Then each node is connected to the min_links nearest neighbors.
- Because inverse links are added, some nodes will have more connections.
- The distance between nodes is the hypotenuse times curvature(),
- where curvature() defaults to a random number between 1.1 and 1.5."""
- g = UndirectedGraph()
- g.locations = {}
- # Build the cities
- for node in nodes:
- g.locations[node] = (random.randrange(width), random.randrange(height))
- # Build roads from each city to at least min_links nearest neighbors.
- for i in range(min_links):
- for node in nodes:
- if len(g.get(node)) < min_links:
- here = g.locations[node]
- def distance_to_node(n):
- if n is node or g.get(node, n):
- return infinity
- return distance(g.locations[n], here)
- neighbor = argmin(nodes, key=distance_to_node)
- d = distance(g.locations[neighbor], here) * curvature()
- g.connect(node, neighbor, int(d))
- return g
- class GraphProblem(Problem):
- """The problem of searching a graph from one node to another."""
- def __init__(self, initial, goal, graph):
- Problem.__init__(self, initial, goal)
- self.graph = graph
- def actions(self, A):
- """The actions at a graph node are just its neighbors."""
- return list(self.graph.get(A).keys())
- def result(self, state, action):
- """The result of going to a neighbor is just that neighbor."""
- return action
- def path_cost(self, cost_so_far, A, action, B):
- return cost_so_far + (self.graph.get(A, B) or infinity)
- def h(self, node):
- """h function is straight-line distance from a node's state to goal."""
- locs = getattr(self.graph, 'locations', None)
- if locs:
- return int(distance(locs[node.state], locs[self.goal]))
- else:
- return infinity
- Pocetok = input()
- Stanica1 = input()
- Stanica2 = input()
- Kraj = input()
- ABdistance=distance((2,1),(2,4))
- BIdistance=distance((2,4),(8,5))
- BCdistance=distance((2,4),(2,10))
- HIdistance=distance((8,1),(8,5))
- IJdistance=distance((8,5),(8,8))
- FCdistance=distance((5,9),(2,10))
- GCdistance=distance((4,11),(2,10))
- CDdistance=distance((2,10),(2,15))
- FGdistance=distance((5,9),(4,11))
- FJdistance=distance((5,9),(8,8))
- KGdistance=distance((8,13),(4,11))
- LKdistance=distance((8,15),(8,13))
- DEdistance=distance((2,15),(2,19))
- DLdistance=distance((2,15),(8,15))
- LMdistance=distance((8,15),(8,19))
- graph = UndirectedGraph({
- "B": {"A": ABdistance, "I": BIdistance, "C": BCdistance},
- "I": {"H": HIdistance, "J": IJdistance},
- "C": {"F": FCdistance, "G": GCdistance, "D": CDdistance},
- "F": {"G": FGdistance, "J": FJdistance},
- "K": {"G": KGdistance, "L": LKdistance},
- "D": {"E": DEdistance, "L": DLdistance},
- "M": {"L": LMdistance}
- })
- graph.locations = dict(
- A = (2,1) , B = (2,4) , C = (2,10) ,
- D = (2,15) , E = (2,19) , F = (5,9) ,
- G = (4,11) , H = (8,1) , I = (8,5),
- J = (8,8) , K = (8,13) , L = (8,15),
- M = (8,19))
- gp1 = GraphProblem(Pocetok,Stanica1,graph)
- gp2 = GraphProblem(Stanica1,Kraj,graph)
- gp11 = GraphProblem(Pocetok,Stanica1,graph)
- gp22 = GraphProblem(Stanica1,Kraj,graph)
- ans1 = astar_search(gp1).solve()
- ans2 = astar_search(gp2).solve()
- ans11 = astar_search(gp11).path_cost
- ans22 = astar_search(gp22).path_cost
- a1 = ans11 + ans22
- gp3 = GraphProblem(Pocetok,Stanica2,graph)
- gp4 = GraphProblem(Stanica2,Kraj,graph)
- gp33 = GraphProblem(Pocetok,Stanica2,graph)
- gp44 = GraphProblem(Stanica2,Kraj,graph)
- ans3 = astar_search(gp3).solve()
- ans4 = astar_search(gp4).solve()
- ans33 = astar_search(gp33).path_cost
- ans44 = astar_search(gp44).path_cost
- a2 = ans33+ans44
- if a2 < a1:
- an =ans3[:] + ans4[1:len(ans4)]
- else:
- an =ans1[:] + ans2[1:len(ans2)]
- print an
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement