Advertisement
Trainlover08

3.1

Oct 12th, 2023 (edited)
183
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
C++ 9.36 KB | None | 0 0
  1. #pragma region VEXcode Generated Robot Configuration
  2. // Make sure all required headers are included.
  3. #include <stdio.h>
  4. #include <stdlib.h>
  5. #include <stdbool.h>
  6. #include <math.h>
  7. #include <string.h>
  8.  
  9.  
  10. #include "vex.h"
  11.  
  12. using namespace vex;
  13.  
  14. competition Competition;
  15.  
  16. // Brain should be defined by default
  17. brain Brain;
  18.  
  19.  
  20. // START V5 MACROS
  21. #define waitUntil(condition)                                                   \
  22.   do {                                                                         \
  23.     wait(5, msec);                                                             \
  24.   } while (!(condition))
  25.  
  26. #define repeat(iterations)                                                     \
  27.   for (int iterator = 0; iterator < iterations; iterator++)
  28. // END V5 MACROS
  29.  
  30.  
  31. // Robot configuration code.
  32. controller Controller1 = controller(primary);
  33. distance Distance1 = distance(PORT7);
  34. motor leftMotorA = motor(PORT14, ratio6_1, false);
  35. motor leftMotorB = motor(PORT11, ratio6_1, false);
  36. motor_group LeftDriveSmart = motor_group(leftMotorA, leftMotorB);
  37. motor rightMotorA = motor(PORT17, ratio6_1, true);
  38. motor rightMotorB = motor(PORT19, ratio6_1, true);
  39. motor_group RightDriveSmart = motor_group(rightMotorA, rightMotorB);
  40. drivetrain Drivetrain = drivetrain(LeftDriveSmart, RightDriveSmart, 219.44, 295, 40, mm, 1);
  41.  
  42. motor cataMotorA = motor(PORT8, ratio36_1, false);
  43. motor cataMotorB = motor(PORT3, ratio36_1, true);
  44. motor_group cata = motor_group(cataMotorA, cataMotorB);
  45.  
  46. motor MotorGroup7MotorA = motor(PORT4, ratio36_1, true);
  47. motor MotorGroup7MotorB = motor(PORT9, ratio36_1, false);
  48. motor_group MotorGroup7 = motor_group(MotorGroup7MotorA, MotorGroup7MotorB);
  49.  
  50. digital_out DigitalOutB = digital_out(Brain.ThreeWirePort.B);
  51. digital_out DigitalOutD = digital_out(Brain.ThreeWirePort.D);
  52.  
  53.  
  54.  
  55. // define variable for remote controller enable/disable
  56. bool RemoteControlCodeEnabled = true;
  57. // define variables used for controlling motors based on controller inputs
  58. bool DrivetrainLNeedsToBeStopped_Controller1 = true;
  59. bool DrivetrainRNeedsToBeStopped_Controller1 = true;
  60.  
  61. // define a task that will handle monitoring inputs from Controller1
  62. int rc_auto_loop_function_Controller1() {
  63.   // process the controller input every 20 milliseconds
  64.   // update the motors based on the input values
  65.   while(true) {
  66.     if(RemoteControlCodeEnabled) {
  67.  
  68.       // calculate the drivetrain motor velocities from the controller joystick axies
  69.       // left = Axis3 + Axis1
  70.       // right = Axis3 - Axis1
  71.       double y = 0;
  72. double x = Controller1.Axis3.position();
  73.  
  74. x = x * 1.28;
  75.  
  76. x = fabs(x);
  77.  
  78. if(0<=x&&x<60){
  79.     y = pow(1.04029, x * 1.284467);
  80. }else if(60<=x&&x<80){
  81.     y = 0.75 * x -25;
  82. }else if(80<=x&&x<=108){
  83.     y = 1.0357 * x - 47.85714857;
  84. }else if(x > 108){
  85.     y = 63 + pow(1.232099, x - 108);
  86. }
  87.  
  88. y = y/1.28;
  89.                  
  90. if(Controller1.Axis3.position() < 0){
  91.     y = -y;
  92. }
  93. double sy = 0;
  94. double sx = Controller1.Axis1.position();
  95.  
  96. sx = sx * 1.28;
  97.  
  98. sx = fabs(sx);
  99.  
  100. if(0<=sx&&sx<60){
  101.     sy = pow(1.04029, sx * 1.284467);
  102. }else if(60<=sx&&sx<80){
  103.     sy = 0.75 * sx -25;
  104. }else if(80<=sx&&sx<=108){
  105.     sy = 1.0357 * sx - 47.85714857;
  106. }else if(sx > 108){
  107.     sy = 63 + pow(1.232099, sx - 108);
  108. }
  109.  
  110. sy = sy/1.28;
  111.                  
  112. if(Controller1.Axis1.position() < 0){
  113.     sy = -sy;
  114. }
  115.  
  116. y = -y;
  117.  
  118.       int drivetrainLeftSideSpeed = y + sy;
  119.       int drivetrainRightSideSpeed = y - sy;
  120.  
  121.       // check if the value is inside of the deadband range
  122.       if (drivetrainLeftSideSpeed < 5 && drivetrainLeftSideSpeed > -5) {
  123.         // check if the left motor has already been stopped
  124.         if (DrivetrainLNeedsToBeStopped_Controller1) {
  125.           // stop the left drive motor
  126.           LeftDriveSmart.stop();
  127.           // tell the code that the left motor has been stopped
  128.           DrivetrainLNeedsToBeStopped_Controller1 = false;
  129.         }
  130.       } else {
  131.         // reset the toggle so that the deadband code knows to stop the left motor nexttime the input is in the deadband range
  132.         DrivetrainLNeedsToBeStopped_Controller1 = true;
  133.       }
  134.       // check if the value is inside of the deadband range
  135.       if (drivetrainRightSideSpeed < 5 && drivetrainRightSideSpeed > -5) {
  136.         // check if the right motor has already been stopped
  137.         if (DrivetrainRNeedsToBeStopped_Controller1) {
  138.           // stop the right drive motor
  139.           RightDriveSmart.stop();
  140.           // tell the code that the right motor has been stopped
  141.           DrivetrainRNeedsToBeStopped_Controller1 = false;
  142.         }
  143.       } else {
  144.         // reset the toggle so that the deadband code knows to stop the right motor next time the input is in the deadband range
  145.         DrivetrainRNeedsToBeStopped_Controller1 = true;
  146.       }
  147.  
  148.       // only tell the left drive motor to spin if the values are not in the deadband range
  149.       if (DrivetrainLNeedsToBeStopped_Controller1) {
  150.         LeftDriveSmart.setVelocity(drivetrainLeftSideSpeed, percent);
  151.         LeftDriveSmart.spin(forward);
  152.       }
  153.       // only tell the right drive motor to spin if the values are not in the deadband range
  154.       if (DrivetrainRNeedsToBeStopped_Controller1) {
  155.         RightDriveSmart.setVelocity(drivetrainRightSideSpeed, percent);
  156.         RightDriveSmart.spin(forward);
  157.       }
  158.     }
  159.     // wait before repeating the process
  160.     wait(20, msec);
  161.   }
  162.   return 0;
  163. }
  164.  
  165.  
  166. task rc_auto_loop_task_Controller1(rc_auto_loop_function_Controller1);
  167.  
  168. #pragma endregion VEXcode Generated Robot Configuration
  169.  
  170.  
  171. // Include the V5 Library
  172. #include "vex.h"
  173.  
  174. // Allows for easier use of the VEX Library
  175. using namespace vex;
  176.  
  177. // "when started" hat block
  178. int whenStarted1() {
  179.   Drivetrain.setDriveVelocity(600.0, rpm);
  180.   Drivetrain.setTurnVelocity(100.0, percent);
  181.   MotorGroup7.setMaxTorque(100, percent);
  182.   MotorGroup7.setVelocity(100, percent);
  183.   cata.setMaxTorque(100, percent);
  184.   cata.setVelocity(100, percent);
  185.   bool wingState = false;
  186.   bool digitalB1 = false;
  187.   bool digitalB2 = false;
  188.   bool pl = false;
  189.   bool ytoggle = false;
  190.   float catapos = 0;
  191.   int turng = 0;
  192.   //read controller
  193.   int counter = 0;
  194.   int tempA = 0;
  195.   int tempB = 0;
  196.   int tempL1 = 0;
  197.   int tempR1 = 0;
  198.   int tempU = 0;
  199.   int tempD = 0;
  200.   int tempR = 0;
  201.   int tempL = 0;
  202.   float temp3 = 0.0;
  203.   float temp1 = 0.0;
  204.   bool matchload = false;
  205.   int i = 0;
  206.   while (true) {
  207.     cata.setStopping(hold);
  208.     cata.stop();
  209.     if(Controller1.ButtonR1.pressing()){
  210.       if(Controller1.Axis3.position() < -15.0){
  211.         MotorGroup7.spin(reverse);
  212.       } else {
  213.         MotorGroup7.spin(forward);
  214.       }
  215.     } else {
  216.       MotorGroup7.spin(forward);
  217.     }
  218.     turng = floor(cata.position(turns));
  219.     if(Controller1.ButtonDown.pressing()){
  220.       cata.spin(reverse);
  221.     }
  222.     if(Controller1.ButtonUp.pressing()){
  223.       cata.spin(forward);
  224.     }
  225.     if(catapos <= 60 || catapos >= 330){
  226.       digitalB2 = false;
  227.     } else {
  228.       digitalB2 = true;
  229.     }
  230.     if(Controller1.ButtonL1.pressing()){
  231.       wingState = !wingState;
  232.     }
  233.     if (Controller1.ButtonL1.pressing()){
  234.       DigitalOutD.set(true);
  235.       wait(150, msec);
  236.     } else{
  237.       DigitalOutD.set(false);
  238.       wait(150, msec);
  239.     }
  240.     if(Controller1.ButtonLeft.pressing()){
  241.       pl = !pl;
  242.       wait(150, msec);
  243.     }
  244.     catapos = cata.position(degrees) - (turng * 360);
  245.     //if(pl == true){
  246.       //DigitalOutB.set(true);
  247.     //} else if((digitalB1 == true || digitalB2 == true)||(digitalB1 == true & digitalB2 == true)){
  248.         //DigitalOutB.set(true);
  249.       //} else {
  250.         //DigitalOutB.set(false);
  251.       //}
  252.      if(Controller1.ButtonY.pressing()){
  253.          ytoggle = !ytoggle;
  254.      }
  255.      if(ytoggle == true){
  256.        //DigitalOutB.set(true);
  257.      }else{
  258.        //DigitalOutB.set(false);
  259.      }
  260.  
  261.   if(Controller1.ButtonA.pressing()){
  262.       matchload = !matchload;
  263.       wait(350, msec);
  264.       }
  265.   if(matchload == true){
  266.     DigitalOutB.set(true);
  267.     MotorGroup7.stop();
  268.     printf("%.1f\n", (Distance1.objectDistance(inches)));
  269.     if(i == 0){
  270.       cata.spinFor(forward, 318, degrees);
  271.       ++i;
  272.     }
  273.     if(Distance1.objectDistance(inches) < 1.5){
  274.       wait(150, msec);
  275.       cata.spinFor(forward, 1, turns);
  276.     }
  277.   } else{
  278.     DigitalOutB.set(false);
  279.     MotorGroup7.setVelocity(100, percent);
  280.     i = 0;
  281.     if(i == 1){
  282.       cata.spinFor(reverse, 318, degrees);
  283.   }}
  284.  
  285.   wait(5, msec);
  286.   }
  287.   return 0;
  288. }
  289.  
  290. int onauton_autonomous_0() {
  291.   wait(15.0, seconds);
  292.   return 0;
  293. }
  294.  
  295. int ondriver_drivercontrol_0() {
  296.   whenStarted1();
  297.   return 0;
  298. }
  299.  
  300. void VEXcode_driver_task() {
  301.   // Start the driver control tasks....
  302.   vex::task drive0(ondriver_drivercontrol_0);
  303.   while(Competition.isDriverControl() && Competition.isEnabled()) {this_thread::sleep_for(10);}
  304.   drive0.stop();
  305.   return;
  306. }
  307.  
  308. void VEXcode_auton_task() {
  309.   // Start the auton control tasks....
  310.   vex::task auto0(onauton_autonomous_0);
  311.   while(Competition.isAutonomous() && Competition.isEnabled()) {this_thread::sleep_for(10);}
  312.   auto0.stop();
  313.   return;
  314. }
  315.  
  316.  
  317. int main() {
  318.   // post event registration
  319.  
  320.   // set default print color to black
  321.   printf("\033[30m");
  322.  
  323.   vex::competition::bStopTasksBetweenModes = false;
  324.   Competition.autonomous(VEXcode_auton_task);
  325.   Competition.drivercontrol(VEXcode_driver_task);
  326.  
  327.   // wait for rotation sensor to fully initialize
  328.   wait(30, msec);
  329.  
  330.  
  331. }
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement