Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- #В модель из предыдущего урока добавьте MaxPooling размером 2x2 после свёрточных слоёв. Вызовите функцию summary(), чтобы посмотреть на изменение количества параметров сети.
- #Убедитесь, что код рабочий. Для этого запустите обучение на одном объекте (уже в прекоде).
- from tensorflow.keras import Sequential
- from tensorflow.keras.layers import Conv2D, Flatten, Dense, MaxPooling2D
- import matplotlib.pyplot as plt
- import numpy as np
- features_train = np.load('/datasets/fashion_mnist/train_features.npy')
- target_train = np.load('/datasets/fashion_mnist/train_target.npy')
- features_test = np.load('/datasets/fashion_mnist/test_features.npy')
- target_test = np.load('/datasets/fashion_mnist/test_target.npy')
- features_train = features_train.reshape(-1, 28, 28, 1) / 255.0
- features_test = features_test.reshape(-1, 28, 28, 1) / 255.0
- model = Sequential()
- model.add(Conv2D(filters=4, kernel_size=(3, 3), padding='same',
- activation="relu", input_shape=(28, 28, 1)))
- model.add(Conv2D(filters=4, kernel_size=(3, 3), strides=2, padding='same',
- activation="relu"))
- model.add(MaxPooling2D(pool_size=(2, 2), strides=None, padding='valid'))
- model.add(Flatten())
- model.add(Dense(units=10, activation='softmax'))
- model.compile(loss='sparse_categorical_crossentropy', optimizer='sgd', metrics=['acc'])
- model.summary()
- model.fit(features_train, target_train, epochs=1, verbose=1, steps_per_epoch=1, batch_size=1)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement