Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- Base case:
- 1² = 1(1)(3)/3 ⇔ 1 = 1 ⇔ true
- Inductive hypothesis: 1² + 3² + 5² + ... + (2n - 1)² = n(2n - 1)(2n + 1)/3 ⇒ 1² + 3² + 5² + ... + (2n - 1)² + (2(n + 1) - 1)² = (n + 1)(2(n + 1) - 1)(2(n + 1) + 1)/3
- ⇔ n(2n - 1)(2n + 1)/3 + (2(n + 1) - 1)² = (n + 1)(2(n + 1) - 1)(2(n + 1) + 1)/3
- ⇔ 4n³ + 12n² + 11n + 3 = 4n³ + 12n² + 11n + 3
- ⇔ 1 = 1
- ⇔ true
- ∴ 1² + 3² + 5² + ... + (2n - 1)² = n(2n - 1)(2n + 1)/3 ∀n ≥ 1
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement