Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- // Box2D Amalgamate
- // Usage: Include this header file for definition, define "BOX2D_IMPL" for implementation.
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_API_H
- #define B2_API_H
- #ifdef B2_SHARED
- #if defined _WIN32 || defined __CYGWIN__
- #ifdef box2d_EXPORTS
- #ifdef __GNUC__
- #define B2_API __attribute__ ((dllexport))
- #else
- #define B2_API __declspec(dllexport)
- #endif
- #else
- #ifdef __GNUC__
- #define B2_API __attribute__ ((dllimport))
- #else
- #define B2_API __declspec(dllimport)
- #endif
- #endif
- #else
- #if __GNUC__ >= 4
- #define B2_API __attribute__ ((visibility ("default")))
- #else
- #define B2_API
- #endif
- #endif
- #else
- #define B2_API
- #endif
- #endif
- // MIT License
- // Copyright (c) 2020 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_TYPES_H
- #define B2_TYPES_H
- typedef signed char int8;
- typedef signed short int16;
- typedef signed int int32;
- typedef unsigned char uint8;
- typedef unsigned short uint16;
- typedef unsigned int uint32;
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_SETTINGS_H
- #define B2_SETTINGS_H
- //#include "b2_types.h"
- //#include "b2_api.h"
- /// @file
- /// Settings that can be overriden for your application
- ///
- /// Define this macro in your build if you want to override settings
- #ifdef B2_USER_SETTINGS
- /// This is a user file that includes custom definitions of the macros, structs, and functions
- /// defined below.
- //#include "b2_user_settings.h"
- #else
- #include <stdarg.h>
- #include <stdint.h>
- // Tunable Constants
- /// You can use this to change the length scale used by your game.
- /// For example for inches you could use 39.4.
- #define b2_lengthUnitsPerMeter 1.0f
- /// The maximum number of vertices on a convex polygon. You cannot increase
- /// this too much because b2BlockAllocator has a maximum object size.
- #define b2_maxPolygonVertices 8
- // User data
- /// You can define this to inject whatever data you want in b2Body
- struct B2_API b2BodyUserData {
- b2BodyUserData() {
- pointer = 0;
- }
- /// For legacy compatibility
- uintptr_t pointer;
- };
- /// You can define this to inject whatever data you want in b2Fixture
- struct B2_API b2FixtureUserData {
- b2FixtureUserData() {
- pointer = 0;
- }
- /// For legacy compatibility
- uintptr_t pointer;
- };
- /// You can define this to inject whatever data you want in b2Joint
- struct B2_API b2JointUserData {
- b2JointUserData() {
- pointer = 0;
- }
- /// For legacy compatibility
- uintptr_t pointer;
- };
- // Memory Allocation
- /// Default allocation functions
- B2_API void* b2Alloc_Default(int32 size);
- B2_API void b2Free_Default(void* mem);
- /// Implement this function to use your own memory allocator.
- inline void* b2Alloc(int32 size) {
- return b2Alloc_Default(size);
- }
- /// If you implement b2Alloc, you should also implement this function.
- inline void b2Free(void* mem) {
- b2Free_Default(mem);
- }
- /// Default logging function
- B2_API void b2Log_Default(const char* string, va_list args);
- /// Implement this to use your own logging.
- inline void b2Log(const char* string, ...) {
- va_list args;
- va_start(args, string);
- b2Log_Default(string, args);
- va_end(args);
- }
- /// The radius of the polygon/edge shape skin. This should not be modified. Making
- /// this smaller means polygons will have an insufficient buffer for continuous collision.
- /// Making it larger may create artifacts for vertex collision.
- #define b2_polygonRadius (2.0f * b2_linearSlop)
- #endif // B2_USER_SETTINGS
- //#include "b2_common.h"
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_STACK_ALLOCATOR_H
- #define B2_STACK_ALLOCATOR_H
- //#include "b2_api.h"
- //#include "b2_settings.h"
- const int32 b2_stackSize = 100 * 1024; // 100k
- const int32 b2_maxStackEntries = 32;
- struct B2_API b2StackEntry {
- char* data;
- int32 size;
- bool usedMalloc;
- };
- // This is a stack allocator used for fast per step allocations.
- // You must nest allocate/free pairs. The code will assert
- // if you try to interleave multiple allocate/free pairs.
- class B2_API b2StackAllocator {
- public:
- b2StackAllocator();
- ~b2StackAllocator();
- void* Allocate(int32 size);
- void Free(void* p);
- int32 GetMaxAllocation() const;
- private:
- char m_data[b2_stackSize];
- int32 m_index;
- int32 m_allocation;
- int32 m_maxAllocation;
- b2StackEntry m_entries[b2_maxStackEntries];
- int32 m_entryCount;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_BLOCK_ALLOCATOR_H
- #define B2_BLOCK_ALLOCATOR_H
- //#include "b2_api.h"
- //#include "b2_settings.h"
- const int32 b2_blockSizeCount = 14;
- struct b2Block;
- struct b2Chunk;
- /// This is a small object allocator used for allocating small
- /// objects that persist for more than one time step.
- /// See: http://www.codeproject.com/useritems/Small_Block_Allocator.asp
- class B2_API b2BlockAllocator {
- public:
- b2BlockAllocator();
- ~b2BlockAllocator();
- /// Allocate memory. This will use b2Alloc if the size is larger than b2_maxBlockSize.
- void* Allocate(int32 size);
- /// Free memory. This will use b2Free if the size is larger than b2_maxBlockSize.
- void Free(void* p, int32 size);
- void Clear();
- private:
- b2Chunk* m_chunks;
- int32 m_chunkCount;
- int32 m_chunkSpace;
- b2Block* m_freeLists[b2_blockSizeCount];
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_MATH_H
- #define B2_MATH_H
- #include <math.h>
- #include <stddef.h>
- #include <assert.h>
- #include <float.h>
- #if !defined(NDEBUG)
- #define b2DEBUG
- #endif
- #define B2_NOT_USED(x) ((void)(x))
- #define b2Assert(A) assert(A)
- #define b2_maxFloat FLT_MAX
- #define b2_epsilon FLT_EPSILON
- #define b2_pi 3.14159265359f
- /// This is used to fatten AABBs in the dynamic tree. This allows proxies
- /// to move by a small amount without triggering a tree adjustment.
- /// This is in meters.
- #define b2_aabbExtension (0.1f * b2_lengthUnitsPerMeter)
- /// This is used to fatten AABBs in the dynamic tree. This is used to predict
- /// the future position based on the current displacement.
- /// This is a dimensionless multiplier.
- #define b2_aabbMultiplier 4.0f
- /// A small length used as a collision and constraint tolerance. Usually it is
- /// chosen to be numerically significant, but visually insignificant. In meters.
- #define b2_linearSlop (0.005f * b2_lengthUnitsPerMeter)
- /// A small angle used as a collision and constraint tolerance. Usually it is
- /// chosen to be numerically significant, but visually insignificant.
- #define b2_angularSlop (2.0f / 180.0f * b2_pi)
- /// Maximum number of sub-steps per contact in continuous physics simulation.
- #define b2_maxSubSteps 8
- /// The maximum number of contact points between two convex shapes. Do
- /// not change this value.
- #define b2_maxManifoldPoints 2
- //#include "b2_api.h"
- //#include "b2_settings.h"
- /// This function is used to ensure that a floating point number is not a NaN or infinity.
- inline bool b2IsValid(float x) {
- return isfinite(x);
- }
- #define b2Sqrt(x) sqrtf(x)
- #define b2Atan2(y, x) atan2f(y, x)
- /// A 2D column vector.
- struct B2_API b2Vec2 {
- /// Default constructor does nothing (for performance).
- b2Vec2() {}
- /// Construct using coordinates.
- b2Vec2(float xIn, float yIn) : x(xIn), y(yIn) {}
- /// Set this vector to all zeros.
- void SetZero() { x = 0.0f; y = 0.0f; }
- /// Set this vector to some specified coordinates.
- void Set(float x_, float y_) { x = x_; y = y_; }
- /// Negate this vector.
- b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
- /// Read from and indexed element.
- float operator () (int32 i) const {
- return (&x)[i];
- }
- /// Write to an indexed element.
- float& operator () (int32 i) {
- return (&x)[i];
- }
- /// Add a vector to this vector.
- void operator += (const b2Vec2& v) {
- x += v.x; y += v.y;
- }
- /// Subtract a vector from this vector.
- void operator -= (const b2Vec2& v) {
- x -= v.x; y -= v.y;
- }
- /// Multiply this vector by a scalar.
- void operator *= (float a) {
- x *= a; y *= a;
- }
- /// Get the length of this vector (the norm).
- float Length() const {
- return b2Sqrt(x * x + y * y);
- }
- /// Get the length squared. For performance, use this instead of
- /// b2Vec2::Length (if possible).
- float LengthSquared() const {
- return x * x + y * y;
- }
- /// Convert this vector into a unit vector. Returns the length.
- float Normalize() {
- float length = Length();
- if (length < b2_epsilon) {
- return 0.0f;
- }
- float invLength = 1.0f / length;
- x *= invLength;
- y *= invLength;
- return length;
- }
- /// Does this vector contain finite coordinates?
- bool IsValid() const {
- return b2IsValid(x) && b2IsValid(y);
- }
- /// Get the skew vector such that dot(skew_vec, other) == cross(vec, other)
- b2Vec2 Skew() const {
- return b2Vec2(-y, x);
- }
- float x, y;
- };
- /// A 2D column vector with 3 elements.
- struct B2_API b2Vec3 {
- /// Default constructor does nothing (for performance).
- b2Vec3() {}
- /// Construct using coordinates.
- b2Vec3(float xIn, float yIn, float zIn) : x(xIn), y(yIn), z(zIn) {}
- /// Set this vector to all zeros.
- void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; }
- /// Set this vector to some specified coordinates.
- void Set(float x_, float y_, float z_) { x = x_; y = y_; z = z_; }
- /// Negate this vector.
- b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; }
- /// Add a vector to this vector.
- void operator += (const b2Vec3& v) {
- x += v.x; y += v.y; z += v.z;
- }
- /// Subtract a vector from this vector.
- void operator -= (const b2Vec3& v) {
- x -= v.x; y -= v.y; z -= v.z;
- }
- /// Multiply this vector by a scalar.
- void operator *= (float s) {
- x *= s; y *= s; z *= s;
- }
- float x, y, z;
- };
- /// A 2-by-2 matrix. Stored in column-major order.
- struct B2_API b2Mat22 {
- /// The default constructor does nothing (for performance).
- b2Mat22() {}
- /// Construct this matrix using columns.
- b2Mat22(const b2Vec2& c1, const b2Vec2& c2) {
- ex = c1;
- ey = c2;
- }
- /// Construct this matrix using scalars.
- b2Mat22(float a11, float a12, float a21, float a22) {
- ex.x = a11; ex.y = a21;
- ey.x = a12; ey.y = a22;
- }
- /// Initialize this matrix using columns.
- void Set(const b2Vec2& c1, const b2Vec2& c2) {
- ex = c1;
- ey = c2;
- }
- /// Set this to the identity matrix.
- void SetIdentity() {
- ex.x = 1.0f; ey.x = 0.0f;
- ex.y = 0.0f; ey.y = 1.0f;
- }
- /// Set this matrix to all zeros.
- void SetZero() {
- ex.x = 0.0f; ey.x = 0.0f;
- ex.y = 0.0f; ey.y = 0.0f;
- }
- b2Mat22 GetInverse() const {
- float a = ex.x, b = ey.x, c = ex.y, d = ey.y;
- b2Mat22 B;
- float det = a * d - b * c;
- if (det != 0.0f) {
- det = 1.0f / det;
- }
- B.ex.x = det * d; B.ey.x = -det * b;
- B.ex.y = -det * c; B.ey.y = det * a;
- return B;
- }
- /// Solve A * x = b, where b is a column vector. This is more efficient
- /// than computing the inverse in one-shot cases.
- b2Vec2 Solve(const b2Vec2& b) const {
- float a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y;
- float det = a11 * a22 - a12 * a21;
- if (det != 0.0f) {
- det = 1.0f / det;
- }
- b2Vec2 x;
- x.x = det * (a22 * b.x - a12 * b.y);
- x.y = det * (a11 * b.y - a21 * b.x);
- return x;
- }
- b2Vec2 ex, ey;
- };
- /// A 3-by-3 matrix. Stored in column-major order.
- struct B2_API b2Mat33 {
- /// The default constructor does nothing (for performance).
- b2Mat33() {}
- /// Construct this matrix using columns.
- b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3) {
- ex = c1;
- ey = c2;
- ez = c3;
- }
- /// Set this matrix to all zeros.
- void SetZero() {
- ex.SetZero();
- ey.SetZero();
- ez.SetZero();
- }
- /// Solve A * x = b, where b is a column vector. This is more efficient
- /// than computing the inverse in one-shot cases.
- b2Vec3 Solve33(const b2Vec3& b) const;
- /// Solve A * x = b, where b is a column vector. This is more efficient
- /// than computing the inverse in one-shot cases. Solve only the upper
- /// 2-by-2 matrix equation.
- b2Vec2 Solve22(const b2Vec2& b) const;
- /// Get the inverse of this matrix as a 2-by-2.
- /// Returns the zero matrix if singular.
- void GetInverse22(b2Mat33* M) const;
- /// Get the symmetric inverse of this matrix as a 3-by-3.
- /// Returns the zero matrix if singular.
- void GetSymInverse33(b2Mat33* M) const;
- b2Vec3 ex, ey, ez;
- };
- /// Rotation
- struct B2_API b2Rot {
- b2Rot() {}
- /// Initialize from an angle in radians
- explicit b2Rot(float angle) {
- /// TODO_ERIN optimize
- s = sinf(angle);
- c = cosf(angle);
- }
- /// Set using an angle in radians.
- void Set(float angle) {
- /// TODO_ERIN optimize
- s = sinf(angle);
- c = cosf(angle);
- }
- /// Set to the identity rotation
- void SetIdentity() {
- s = 0.0f;
- c = 1.0f;
- }
- /// Get the angle in radians
- float GetAngle() const {
- return b2Atan2(s, c);
- }
- /// Get the x-axis
- b2Vec2 GetXAxis() const {
- return b2Vec2(c, s);
- }
- /// Get the u-axis
- b2Vec2 GetYAxis() const {
- return b2Vec2(-s, c);
- }
- /// Sine and cosine
- float s, c;
- };
- /// A transform contains translation and rotation. It is used to represent
- /// the position and orientation of rigid frames.
- struct B2_API b2Transform {
- /// The default constructor does nothing.
- b2Transform() {}
- /// Initialize using a position vector and a rotation.
- b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {}
- /// Set this to the identity transform.
- void SetIdentity() {
- p.SetZero();
- q.SetIdentity();
- }
- /// Set this based on the position and angle.
- void Set(const b2Vec2& position, float angle) {
- p = position;
- q.Set(angle);
- }
- b2Vec2 p;
- b2Rot q;
- };
- /// This describes the motion of a body/shape for TOI computation.
- /// Shapes are defined with respect to the body origin, which may
- /// no coincide with the center of mass. However, to support dynamics
- /// we must interpolate the center of mass position.
- struct B2_API b2Sweep {
- /// Get the interpolated transform at a specific time.
- /// @param transform the output transform
- /// @param beta is a factor in [0,1], where 0 indicates alpha0.
- void GetTransform(b2Transform* transform, float beta) const;
- /// Advance the sweep forward, yielding a new initial state.
- /// @param alpha the new initial time.
- void Advance(float alpha);
- /// Normalize the angles.
- void Normalize();
- b2Vec2 localCenter; ///< local center of mass position
- b2Vec2 c0, c; ///< center world positions
- float a0, a; ///< world angles
- /// Fraction of the current time step in the range [0,1]
- /// c0 and a0 are the positions at alpha0.
- float alpha0;
- };
- /// Useful constant
- extern B2_API const b2Vec2 b2Vec2_zero;
- /// Perform the dot product on two vectors.
- inline float b2Dot(const b2Vec2& a, const b2Vec2& b) {
- return a.x * b.x + a.y * b.y;
- }
- /// Perform the cross product on two vectors. In 2D this produces a scalar.
- inline float b2Cross(const b2Vec2& a, const b2Vec2& b) {
- return a.x * b.y - a.y * b.x;
- }
- /// Perform the cross product on a vector and a scalar. In 2D this produces
- /// a vector.
- inline b2Vec2 b2Cross(const b2Vec2& a, float s) {
- return b2Vec2(s * a.y, -s * a.x);
- }
- /// Perform the cross product on a scalar and a vector. In 2D this produces
- /// a vector.
- inline b2Vec2 b2Cross(float s, const b2Vec2& a) {
- return b2Vec2(-s * a.y, s * a.x);
- }
- /// Multiply a matrix times a vector. If a rotation matrix is provided,
- /// then this transforms the vector from one frame to another.
- inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v) {
- return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
- }
- /// Multiply a matrix transpose times a vector. If a rotation matrix is provided,
- /// then this transforms the vector from one frame to another (inverse transform).
- inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v) {
- return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey));
- }
- /// Add two vectors component-wise.
- inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b) {
- return b2Vec2(a.x + b.x, a.y + b.y);
- }
- /// Subtract two vectors component-wise.
- inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b) {
- return b2Vec2(a.x - b.x, a.y - b.y);
- }
- inline b2Vec2 operator * (float s, const b2Vec2& a) {
- return b2Vec2(s * a.x, s * a.y);
- }
- inline bool operator == (const b2Vec2& a, const b2Vec2& b) {
- return a.x == b.x && a.y == b.y;
- }
- inline bool operator != (const b2Vec2& a, const b2Vec2& b) {
- return a.x != b.x || a.y != b.y;
- }
- inline float b2Distance(const b2Vec2& a, const b2Vec2& b) {
- b2Vec2 c = a - b;
- return c.Length();
- }
- inline float b2DistanceSquared(const b2Vec2& a, const b2Vec2& b) {
- b2Vec2 c = a - b;
- return b2Dot(c, c);
- }
- inline b2Vec3 operator * (float s, const b2Vec3& a) {
- return b2Vec3(s * a.x, s * a.y, s * a.z);
- }
- /// Add two vectors component-wise.
- inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b) {
- return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z);
- }
- /// Subtract two vectors component-wise.
- inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b) {
- return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z);
- }
- /// Perform the dot product on two vectors.
- inline float b2Dot(const b2Vec3& a, const b2Vec3& b) {
- return a.x * b.x + a.y * b.y + a.z * b.z;
- }
- /// Perform the cross product on two vectors.
- inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b) {
- return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
- }
- inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B) {
- return b2Mat22(A.ex + B.ex, A.ey + B.ey);
- }
- // A * B
- inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B) {
- return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey));
- }
- // A^T * B
- inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B) {
- b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex));
- b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey));
- return b2Mat22(c1, c2);
- }
- /// Multiply a matrix times a vector.
- inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v) {
- return v.x * A.ex + v.y * A.ey + v.z * A.ez;
- }
- /// Multiply a matrix times a vector.
- inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v) {
- return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
- }
- /// Multiply two rotations: q * r
- inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r) {
- // [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc]
- // [qs qc] [rs rc] [qs*rc+qc*rs -qs*rs+qc*rc]
- // s = qs * rc + qc * rs
- // c = qc * rc - qs * rs
- b2Rot qr;
- qr.s = q.s * r.c + q.c * r.s;
- qr.c = q.c * r.c - q.s * r.s;
- return qr;
- }
- /// Transpose multiply two rotations: qT * r
- inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r) {
- // [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc]
- // [-qs qc] [rs rc] [-qs*rc+qc*rs qs*rs+qc*rc]
- // s = qc * rs - qs * rc
- // c = qc * rc + qs * rs
- b2Rot qr;
- qr.s = q.c * r.s - q.s * r.c;
- qr.c = q.c * r.c + q.s * r.s;
- return qr;
- }
- /// Rotate a vector
- inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v) {
- return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y);
- }
- /// Inverse rotate a vector
- inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v) {
- return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y);
- }
- inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v) {
- float x = (T.q.c * v.x - T.q.s * v.y) + T.p.x;
- float y = (T.q.s * v.x + T.q.c * v.y) + T.p.y;
- return b2Vec2(x, y);
- }
- inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v) {
- float px = v.x - T.p.x;
- float py = v.y - T.p.y;
- float x = (T.q.c * px + T.q.s * py);
- float y = (-T.q.s * px + T.q.c * py);
- return b2Vec2(x, y);
- }
- // v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p
- // = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p
- inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B) {
- b2Transform C;
- C.q = b2Mul(A.q, B.q);
- C.p = b2Mul(A.q, B.p) + A.p;
- return C;
- }
- // v2 = A.q' * (B.q * v1 + B.p - A.p)
- // = A.q' * B.q * v1 + A.q' * (B.p - A.p)
- inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B) {
- b2Transform C;
- C.q = b2MulT(A.q, B.q);
- C.p = b2MulT(A.q, B.p - A.p);
- return C;
- }
- template <typename T>
- inline T b2Abs(T a) {
- return a > T(0) ? a : -a;
- }
- inline b2Vec2 b2Abs(const b2Vec2& a) {
- return b2Vec2(b2Abs(a.x), b2Abs(a.y));
- }
- inline b2Mat22 b2Abs(const b2Mat22& A) {
- return b2Mat22(b2Abs(A.ex), b2Abs(A.ey));
- }
- template <typename T>
- inline T b2Min(T a, T b) {
- return a < b ? a : b;
- }
- inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b) {
- return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y));
- }
- template <typename T>
- inline T b2Max(T a, T b) {
- return a > b ? a : b;
- }
- inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b) {
- return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y));
- }
- template <typename T>
- inline T b2Clamp(T a, T low, T high) {
- return b2Max(low, b2Min(a, high));
- }
- inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high) {
- return b2Max(low, b2Min(a, high));
- }
- template<typename T> inline void b2Swap(T& a, T& b) {
- T tmp = a;
- a = b;
- b = tmp;
- }
- /// "Next Largest Power of 2
- /// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
- /// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
- /// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
- /// largest power of 2. For a 32-bit value:"
- inline uint32 b2NextPowerOfTwo(uint32 x) {
- x |= (x >> 1);
- x |= (x >> 2);
- x |= (x >> 4);
- x |= (x >> 8);
- x |= (x >> 16);
- return x + 1;
- }
- inline bool b2IsPowerOfTwo(uint32 x) {
- bool result = x > 0 && (x & (x - 1)) == 0;
- return result;
- }
- // https://fgiesen.wordpress.com/2012/08/15/linear-interpolation-past-present-and-future/
- inline void b2Sweep::GetTransform(b2Transform* xf, float beta) const {
- xf->p = (1.0f - beta) * c0 + beta * c;
- float angle = (1.0f - beta) * a0 + beta * a;
- xf->q.Set(angle);
- // Shift to origin
- xf->p -= b2Mul(xf->q, localCenter);
- }
- inline void b2Sweep::Advance(float alpha) {
- b2Assert(alpha0 < 1.0f);
- float beta = (alpha - alpha0) / (1.0f - alpha0);
- c0 += beta * (c - c0);
- a0 += beta * (a - a0);
- alpha0 = alpha;
- }
- /// Normalize an angle in radians to be between -pi and pi
- inline void b2Sweep::Normalize() {
- float twoPi = 2.0f * b2_pi;
- float d = twoPi * floorf(a0 / twoPi);
- a0 -= d;
- a -= d;
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_COLLISION_H
- #define B2_COLLISION_H
- #include <limits.h>
- //#include "b2_api.h"
- //#include "b2_math.h"
- /// @file
- /// Structures and functions used for computing contact points, distance
- /// queries, and TOI queries.
- class b2Shape;
- class b2CircleShape;
- class b2EdgeShape;
- class b2PolygonShape;
- const uint8 b2_nullFeature = UCHAR_MAX;
- /// The features that intersect to form the contact point
- /// This must be 4 bytes or less.
- struct B2_API b2ContactFeature {
- enum Type {
- e_vertex = 0,
- e_face = 1
- };
- uint8 indexA; ///< Feature index on shapeA
- uint8 indexB; ///< Feature index on shapeB
- uint8 typeA; ///< The feature type on shapeA
- uint8 typeB; ///< The feature type on shapeB
- };
- /// Contact ids to facilitate warm starting.
- union B2_API b2ContactID {
- b2ContactFeature cf;
- uint32 key; ///< Used to quickly compare contact ids.
- };
- /// A manifold point is a contact point belonging to a contact
- /// manifold. It holds details related to the geometry and dynamics
- /// of the contact points.
- /// The local point usage depends on the manifold type:
- /// -e_circles: the local center of circleB
- /// -e_faceA: the local center of cirlceB or the clip point of polygonB
- /// -e_faceB: the clip point of polygonA
- /// This structure is stored across time steps, so we keep it small.
- /// Note: the impulses are used for internal caching and may not
- /// provide reliable contact forces, especially for high speed collisions.
- struct B2_API b2ManifoldPoint {
- b2Vec2 localPoint; ///< usage depends on manifold type
- float normalImpulse; ///< the non-penetration impulse
- float tangentImpulse; ///< the friction impulse
- b2ContactID id; ///< uniquely identifies a contact point between two shapes
- };
- /// A manifold for two touching convex shapes.
- /// Box2D supports multiple types of contact:
- /// - clip point versus plane with radius
- /// - point versus point with radius (circles)
- /// The local point usage depends on the manifold type:
- /// -e_circles: the local center of circleA
- /// -e_faceA: the center of faceA
- /// -e_faceB: the center of faceB
- /// Similarly the local normal usage:
- /// -e_circles: not used
- /// -e_faceA: the normal on polygonA
- /// -e_faceB: the normal on polygonB
- /// We store contacts in this way so that position correction can
- /// account for movement, which is critical for continuous physics.
- /// All contact scenarios must be expressed in one of these types.
- /// This structure is stored across time steps, so we keep it small.
- struct B2_API b2Manifold {
- enum Type {
- e_circles,
- e_faceA,
- e_faceB
- };
- b2ManifoldPoint points[b2_maxManifoldPoints]; ///< the points of contact
- b2Vec2 localNormal; ///< not use for Type::e_points
- b2Vec2 localPoint; ///< usage depends on manifold type
- Type type;
- int32 pointCount; ///< the number of manifold points
- };
- /// This is used to compute the current state of a contact manifold.
- struct B2_API b2WorldManifold {
- /// Evaluate the manifold with supplied transforms. This assumes
- /// modest motion from the original state. This does not change the
- /// point count, impulses, etc. The radii must come from the shapes
- /// that generated the manifold.
- void Initialize(const b2Manifold* manifold,
- const b2Transform& xfA, float radiusA,
- const b2Transform& xfB, float radiusB);
- b2Vec2 normal; ///< world vector pointing from A to B
- b2Vec2 points[b2_maxManifoldPoints]; ///< world contact point (point of intersection)
- float separations[b2_maxManifoldPoints]; ///< a negative value indicates overlap, in meters
- };
- /// This is used for determining the state of contact points.
- enum b2PointState {
- b2_nullState, ///< point does not exist
- b2_addState, ///< point was added in the update
- b2_persistState, ///< point persisted across the update
- b2_removeState ///< point was removed in the update
- };
- /// Compute the point states given two manifolds. The states pertain to the transition from manifold1
- /// to manifold2. So state1 is either persist or remove while state2 is either add or persist.
- B2_API void b2GetPointStates(b2PointState state1[b2_maxManifoldPoints], b2PointState state2[b2_maxManifoldPoints],
- const b2Manifold* manifold1, const b2Manifold* manifold2);
- /// Used for computing contact manifolds.
- struct B2_API b2ClipVertex {
- b2Vec2 v;
- b2ContactID id;
- };
- /// Ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1).
- struct B2_API b2RayCastInput {
- b2Vec2 p1, p2;
- float maxFraction;
- };
- /// Ray-cast output data. The ray hits at p1 + fraction * (p2 - p1), where p1 and p2
- /// come from b2RayCastInput.
- struct B2_API b2RayCastOutput {
- b2Vec2 normal;
- float fraction;
- };
- /// An axis aligned bounding box.
- struct B2_API b2AABB {
- /// Verify that the bounds are sorted.
- bool IsValid() const;
- /// Get the center of the AABB.
- b2Vec2 GetCenter() const {
- return 0.5f * (lowerBound + upperBound);
- }
- /// Get the extents of the AABB (half-widths).
- b2Vec2 GetExtents() const {
- return 0.5f * (upperBound - lowerBound);
- }
- /// Get the perimeter length
- float GetPerimeter() const {
- float wx = upperBound.x - lowerBound.x;
- float wy = upperBound.y - lowerBound.y;
- return 2.0f * (wx + wy);
- }
- /// Combine an AABB into this one.
- void Combine(const b2AABB& aabb) {
- lowerBound = b2Min(lowerBound, aabb.lowerBound);
- upperBound = b2Max(upperBound, aabb.upperBound);
- }
- /// Combine two AABBs into this one.
- void Combine(const b2AABB& aabb1, const b2AABB& aabb2) {
- lowerBound = b2Min(aabb1.lowerBound, aabb2.lowerBound);
- upperBound = b2Max(aabb1.upperBound, aabb2.upperBound);
- }
- /// Does this aabb contain the provided AABB.
- bool Contains(const b2AABB& aabb) const {
- bool result = true;
- result = result && lowerBound.x <= aabb.lowerBound.x;
- result = result && lowerBound.y <= aabb.lowerBound.y;
- result = result && aabb.upperBound.x <= upperBound.x;
- result = result && aabb.upperBound.y <= upperBound.y;
- return result;
- }
- bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input) const;
- b2Vec2 lowerBound; ///< the lower vertex
- b2Vec2 upperBound; ///< the upper vertex
- };
- /// Compute the collision manifold between two circles.
- B2_API void b2CollideCircles(b2Manifold* manifold,
- const b2CircleShape* circleA, const b2Transform& xfA,
- const b2CircleShape* circleB, const b2Transform& xfB);
- /// Compute the collision manifold between a polygon and a circle.
- B2_API void b2CollidePolygonAndCircle(b2Manifold* manifold,
- const b2PolygonShape* polygonA, const b2Transform& xfA,
- const b2CircleShape* circleB, const b2Transform& xfB);
- /// Compute the collision manifold between two polygons.
- B2_API void b2CollidePolygons(b2Manifold* manifold,
- const b2PolygonShape* polygonA, const b2Transform& xfA,
- const b2PolygonShape* polygonB, const b2Transform& xfB);
- /// Compute the collision manifold between an edge and a circle.
- B2_API void b2CollideEdgeAndCircle(b2Manifold* manifold,
- const b2EdgeShape* polygonA, const b2Transform& xfA,
- const b2CircleShape* circleB, const b2Transform& xfB);
- /// Compute the collision manifold between an edge and a polygon.
- B2_API void b2CollideEdgeAndPolygon(b2Manifold* manifold,
- const b2EdgeShape* edgeA, const b2Transform& xfA,
- const b2PolygonShape* circleB, const b2Transform& xfB);
- /// Clipping for contact manifolds.
- B2_API int32 b2ClipSegmentToLine(b2ClipVertex vOut[2], const b2ClipVertex vIn[2],
- const b2Vec2& normal, float offset, int32 vertexIndexA);
- /// Determine if two generic shapes overlap.
- B2_API bool b2TestOverlap(const b2Shape* shapeA, int32 indexA,
- const b2Shape* shapeB, int32 indexB,
- const b2Transform& xfA, const b2Transform& xfB);
- // ---------------- Inline Functions ------------------------------------------
- inline bool b2AABB::IsValid() const {
- b2Vec2 d = upperBound - lowerBound;
- bool valid = d.x >= 0.0f && d.y >= 0.0f;
- valid = valid && lowerBound.IsValid() && upperBound.IsValid();
- return valid;
- }
- inline bool b2TestOverlap(const b2AABB& a, const b2AABB& b) {
- b2Vec2 d1, d2;
- d1 = b.lowerBound - a.upperBound;
- d2 = a.lowerBound - b.upperBound;
- if (d1.x > 0.0f || d1.y > 0.0f)
- return false;
- if (d2.x > 0.0f || d2.y > 0.0f)
- return false;
- return true;
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_SHAPE_H
- #define B2_SHAPE_H
- //#include "b2_api.h"
- //#include "b2_math.h"
- //#include "b2_collision.h"
- class b2BlockAllocator;
- /// This holds the mass data computed for a shape.
- struct B2_API b2MassData {
- /// The mass of the shape, usually in kilograms.
- float mass;
- /// The position of the shape's centroid relative to the shape's origin.
- b2Vec2 center;
- /// The rotational inertia of the shape about the local origin.
- float I;
- };
- /// A shape is used for collision detection. You can create a shape however you like.
- /// Shapes used for simulation in b2World are created automatically when a b2Fixture
- /// is created. Shapes may encapsulate a one or more child shapes.
- class B2_API b2Shape {
- public:
- enum Type {
- e_circle = 0,
- e_edge = 1,
- e_polygon = 2,
- e_chain = 3,
- e_typeCount = 4
- };
- virtual ~b2Shape() {}
- /// Clone the concrete shape using the provided allocator.
- virtual b2Shape* Clone(b2BlockAllocator* allocator) const = 0;
- /// Get the type of this shape. You can use this to down cast to the concrete shape.
- /// @return the shape type.
- Type GetType() const;
- /// Get the number of child primitives.
- virtual int32 GetChildCount() const = 0;
- /// Test a point for containment in this shape. This only works for convex shapes.
- /// @param xf the shape world transform.
- /// @param p a point in world coordinates.
- virtual bool TestPoint(const b2Transform& xf, const b2Vec2& p) const = 0;
- /// Cast a ray against a child shape.
- /// @param output the ray-cast results.
- /// @param input the ray-cast input parameters.
- /// @param transform the transform to be applied to the shape.
- /// @param childIndex the child shape index
- virtual bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
- const b2Transform& transform, int32 childIndex) const = 0;
- /// Given a transform, compute the associated axis aligned bounding box for a child shape.
- /// @param aabb returns the axis aligned box.
- /// @param xf the world transform of the shape.
- /// @param childIndex the child shape
- virtual void ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const = 0;
- /// Compute the mass properties of this shape using its dimensions and density.
- /// The inertia tensor is computed about the local origin.
- /// @param massData returns the mass data for this shape.
- /// @param density the density in kilograms per meter squared.
- virtual void ComputeMass(b2MassData* massData, float density) const = 0;
- Type m_type;
- /// Radius of a shape. For polygonal shapes this must be b2_polygonRadius. There is no support for
- /// making rounded polygons.
- float m_radius;
- };
- inline b2Shape::Type b2Shape::GetType() const {
- return m_type;
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_BODY_H
- #define B2_BODY_H
- //#include "b2_api.h"
- //#include "b2_math.h"
- //#include "b2_shape.h"
- class b2Fixture;
- class b2Joint;
- class b2Contact;
- class b2Controller;
- class b2World;
- struct b2FixtureDef;
- struct b2JointEdge;
- struct b2ContactEdge;
- /// The body type.
- /// static: zero mass, zero velocity, may be manually moved
- /// kinematic: zero mass, non-zero velocity set by user, moved by solver
- /// dynamic: positive mass, non-zero velocity determined by forces, moved by solver
- enum b2BodyType {
- b2_staticBody = 0,
- b2_kinematicBody,
- b2_dynamicBody
- };
- /// A body definition holds all the data needed to construct a rigid body.
- /// You can safely re-use body definitions. Shapes are added to a body after construction.
- struct B2_API b2BodyDef {
- /// This constructor sets the body definition default values.
- b2BodyDef() {
- position.Set(0.0f, 0.0f);
- angle = 0.0f;
- linearVelocity.Set(0.0f, 0.0f);
- angularVelocity = 0.0f;
- linearDamping = 0.0f;
- angularDamping = 0.0f;
- allowSleep = true;
- awake = true;
- fixedRotation = false;
- bullet = false;
- type = b2_staticBody;
- enabled = true;
- gravityScale = 1.0f;
- }
- /// The body type: static, kinematic, or dynamic.
- /// Note: if a dynamic body would have zero mass, the mass is set to one.
- b2BodyType type;
- /// The world position of the body. Avoid creating bodies at the origin
- /// since this can lead to many overlapping shapes.
- b2Vec2 position;
- /// The world angle of the body in radians.
- float angle;
- /// The linear velocity of the body's origin in world co-ordinates.
- b2Vec2 linearVelocity;
- /// The angular velocity of the body.
- float angularVelocity;
- /// Linear damping is use to reduce the linear velocity. The damping parameter
- /// can be larger than 1.0f but the damping effect becomes sensitive to the
- /// time step when the damping parameter is large.
- /// Units are 1/time
- float linearDamping;
- /// Angular damping is use to reduce the angular velocity. The damping parameter
- /// can be larger than 1.0f but the damping effect becomes sensitive to the
- /// time step when the damping parameter is large.
- /// Units are 1/time
- float angularDamping;
- /// Set this flag to false if this body should never fall asleep. Note that
- /// this increases CPU usage.
- bool allowSleep;
- /// Is this body initially awake or sleeping?
- bool awake;
- /// Should this body be prevented from rotating? Useful for characters.
- bool fixedRotation;
- /// Is this a fast moving body that should be prevented from tunneling through
- /// other moving bodies? Note that all bodies are prevented from tunneling through
- /// kinematic and static bodies. This setting is only considered on dynamic bodies.
- /// @warning You should use this flag sparingly since it increases processing time.
- bool bullet;
- /// Does this body start out enabled?
- bool enabled;
- /// Use this to store application specific body data.
- b2BodyUserData userData;
- /// Scale the gravity applied to this body.
- float gravityScale;
- };
- /// A rigid body. These are created via b2World::CreateBody.
- class B2_API b2Body {
- public:
- /// Creates a fixture and attach it to this body. Use this function if you need
- /// to set some fixture parameters, like friction. Otherwise you can create the
- /// fixture directly from a shape.
- /// If the density is non-zero, this function automatically updates the mass of the body.
- /// Contacts are not created until the next time step.
- /// @param def the fixture definition.
- /// @warning This function is locked during callbacks.
- b2Fixture* CreateFixture(const b2FixtureDef* def);
- /// Creates a fixture from a shape and attach it to this body.
- /// This is a convenience function. Use b2FixtureDef if you need to set parameters
- /// like friction, restitution, user data, or filtering.
- /// If the density is non-zero, this function automatically updates the mass of the body.
- /// @param shape the shape to be cloned.
- /// @param density the shape density (set to zero for static bodies).
- /// @warning This function is locked during callbacks.
- b2Fixture* CreateFixture(const b2Shape* shape, float density);
- /// Destroy a fixture. This removes the fixture from the broad-phase and
- /// destroys all contacts associated with this fixture. This will
- /// automatically adjust the mass of the body if the body is dynamic and the
- /// fixture has positive density.
- /// All fixtures attached to a body are implicitly destroyed when the body is destroyed.
- /// @param fixture the fixture to be removed.
- /// @warning This function is locked during callbacks.
- void DestroyFixture(b2Fixture* fixture);
- /// Set the position of the body's origin and rotation.
- /// Manipulating a body's transform may cause non-physical behavior.
- /// Note: contacts are updated on the next call to b2World::Step.
- /// @param position the world position of the body's local origin.
- /// @param angle the world rotation in radians.
- void SetTransform(const b2Vec2& position, float angle);
- /// Get the body transform for the body's origin.
- /// @return the world transform of the body's origin.
- const b2Transform& GetTransform() const;
- /// Get the world body origin position.
- /// @return the world position of the body's origin.
- const b2Vec2& GetPosition() const;
- /// Get the angle in radians.
- /// @return the current world rotation angle in radians.
- float GetAngle() const;
- /// Get the world position of the center of mass.
- const b2Vec2& GetWorldCenter() const;
- /// Get the local position of the center of mass.
- const b2Vec2& GetLocalCenter() const;
- /// Set the linear velocity of the center of mass.
- /// @param v the new linear velocity of the center of mass.
- void SetLinearVelocity(const b2Vec2& v);
- /// Get the linear velocity of the center of mass.
- /// @return the linear velocity of the center of mass.
- const b2Vec2& GetLinearVelocity() const;
- /// Set the angular velocity.
- /// @param omega the new angular velocity in radians/second.
- void SetAngularVelocity(float omega);
- /// Get the angular velocity.
- /// @return the angular velocity in radians/second.
- float GetAngularVelocity() const;
- /// Apply a force at a world point. If the force is not
- /// applied at the center of mass, it will generate a torque and
- /// affect the angular velocity. This wakes up the body.
- /// @param force the world force vector, usually in Newtons (N).
- /// @param point the world position of the point of application.
- /// @param wake also wake up the body
- void ApplyForce(const b2Vec2& force, const b2Vec2& point, bool wake);
- /// Apply a force to the center of mass. This wakes up the body.
- /// @param force the world force vector, usually in Newtons (N).
- /// @param wake also wake up the body
- void ApplyForceToCenter(const b2Vec2& force, bool wake);
- /// Apply a torque. This affects the angular velocity
- /// without affecting the linear velocity of the center of mass.
- /// @param torque about the z-axis (out of the screen), usually in N-m.
- /// @param wake also wake up the body
- void ApplyTorque(float torque, bool wake);
- /// Apply an impulse at a point. This immediately modifies the velocity.
- /// It also modifies the angular velocity if the point of application
- /// is not at the center of mass. This wakes up the body.
- /// @param impulse the world impulse vector, usually in N-seconds or kg-m/s.
- /// @param point the world position of the point of application.
- /// @param wake also wake up the body
- void ApplyLinearImpulse(const b2Vec2& impulse, const b2Vec2& point, bool wake);
- /// Apply an impulse to the center of mass. This immediately modifies the velocity.
- /// @param impulse the world impulse vector, usually in N-seconds or kg-m/s.
- /// @param wake also wake up the body
- void ApplyLinearImpulseToCenter(const b2Vec2& impulse, bool wake);
- /// Apply an angular impulse.
- /// @param impulse the angular impulse in units of kg*m*m/s
- /// @param wake also wake up the body
- void ApplyAngularImpulse(float impulse, bool wake);
- /// Get the total mass of the body.
- /// @return the mass, usually in kilograms (kg).
- float GetMass() const;
- /// Get the rotational inertia of the body about the local origin.
- /// @return the rotational inertia, usually in kg-m^2.
- float GetInertia() const;
- /// Get the mass data of the body.
- /// @return a struct containing the mass, inertia and center of the body.
- void GetMassData(b2MassData* data) const;
- /// Set the mass properties to override the mass properties of the fixtures.
- /// Note that this changes the center of mass position.
- /// Note that creating or destroying fixtures can also alter the mass.
- /// This function has no effect if the body isn't dynamic.
- /// @param data the mass properties.
- void SetMassData(const b2MassData* data);
- /// This resets the mass properties to the sum of the mass properties of the fixtures.
- /// This normally does not need to be called unless you called SetMassData to override
- /// the mass and you later want to reset the mass.
- void ResetMassData();
- /// Get the world coordinates of a point given the local coordinates.
- /// @param localPoint a point on the body measured relative the the body's origin.
- /// @return the same point expressed in world coordinates.
- b2Vec2 GetWorldPoint(const b2Vec2& localPoint) const;
- /// Get the world coordinates of a vector given the local coordinates.
- /// @param localVector a vector fixed in the body.
- /// @return the same vector expressed in world coordinates.
- b2Vec2 GetWorldVector(const b2Vec2& localVector) const;
- /// Gets a local point relative to the body's origin given a world point.
- /// @param worldPoint a point in world coordinates.
- /// @return the corresponding local point relative to the body's origin.
- b2Vec2 GetLocalPoint(const b2Vec2& worldPoint) const;
- /// Gets a local vector given a world vector.
- /// @param worldVector a vector in world coordinates.
- /// @return the corresponding local vector.
- b2Vec2 GetLocalVector(const b2Vec2& worldVector) const;
- /// Get the world linear velocity of a world point attached to this body.
- /// @param worldPoint a point in world coordinates.
- /// @return the world velocity of a point.
- b2Vec2 GetLinearVelocityFromWorldPoint(const b2Vec2& worldPoint) const;
- /// Get the world velocity of a local point.
- /// @param localPoint a point in local coordinates.
- /// @return the world velocity of a point.
- b2Vec2 GetLinearVelocityFromLocalPoint(const b2Vec2& localPoint) const;
- /// Get the linear damping of the body.
- float GetLinearDamping() const;
- /// Set the linear damping of the body.
- void SetLinearDamping(float linearDamping);
- /// Get the angular damping of the body.
- float GetAngularDamping() const;
- /// Set the angular damping of the body.
- void SetAngularDamping(float angularDamping);
- /// Get the gravity scale of the body.
- float GetGravityScale() const;
- /// Set the gravity scale of the body.
- void SetGravityScale(float scale);
- /// Set the type of this body. This may alter the mass and velocity.
- void SetType(b2BodyType type);
- /// Get the type of this body.
- b2BodyType GetType() const;
- /// Should this body be treated like a bullet for continuous collision detection?
- void SetBullet(bool flag);
- /// Is this body treated like a bullet for continuous collision detection?
- bool IsBullet() const;
- /// You can disable sleeping on this body. If you disable sleeping, the
- /// body will be woken.
- void SetSleepingAllowed(bool flag);
- /// Is this body allowed to sleep
- bool IsSleepingAllowed() const;
- /// Set the sleep state of the body. A sleeping body has very
- /// low CPU cost.
- /// @param flag set to true to wake the body, false to put it to sleep.
- void SetAwake(bool flag);
- /// Get the sleeping state of this body.
- /// @return true if the body is awake.
- bool IsAwake() const;
- /// Allow a body to be disabled. A disabled body is not simulated and cannot
- /// be collided with or woken up.
- /// If you pass a flag of true, all fixtures will be added to the broad-phase.
- /// If you pass a flag of false, all fixtures will be removed from the
- /// broad-phase and all contacts will be destroyed.
- /// Fixtures and joints are otherwise unaffected. You may continue
- /// to create/destroy fixtures and joints on disabled bodies.
- /// Fixtures on a disabled body are implicitly disabled and will
- /// not participate in collisions, ray-casts, or queries.
- /// Joints connected to a disabled body are implicitly disabled.
- /// An diabled body is still owned by a b2World object and remains
- /// in the body list.
- void SetEnabled(bool flag);
- /// Get the active state of the body.
- bool IsEnabled() const;
- /// Set this body to have fixed rotation. This causes the mass
- /// to be reset.
- void SetFixedRotation(bool flag);
- /// Does this body have fixed rotation?
- bool IsFixedRotation() const;
- /// Get the list of all fixtures attached to this body.
- b2Fixture* GetFixtureList();
- const b2Fixture* GetFixtureList() const;
- /// Get the list of all joints attached to this body.
- b2JointEdge* GetJointList();
- const b2JointEdge* GetJointList() const;
- /// Get the list of all contacts attached to this body.
- /// @warning this list changes during the time step and you may
- /// miss some collisions if you don't use b2ContactListener.
- b2ContactEdge* GetContactList();
- const b2ContactEdge* GetContactList() const;
- /// Get the next body in the world's body list.
- b2Body* GetNext();
- const b2Body* GetNext() const;
- /// Get the user data pointer that was provided in the body definition.
- b2BodyUserData& GetUserData();
- /// Set the user data. Use this to store your application specific data.
- void SetUserData(void* data);
- /// Get the parent world of this body.
- b2World* GetWorld();
- const b2World* GetWorld() const;
- /// Dump this body to a file
- void Dump();
- private:
- friend class b2World;
- friend class b2Island;
- friend class b2ContactManager;
- friend class b2ContactSolver;
- friend class b2Contact;
- friend class b2DistanceJoint;
- friend class b2FrictionJoint;
- friend class b2GearJoint;
- friend class b2MotorJoint;
- friend class b2MouseJoint;
- friend class b2PrismaticJoint;
- friend class b2PulleyJoint;
- friend class b2RevoluteJoint;
- friend class b2RopeJoint;
- friend class b2WeldJoint;
- friend class b2WheelJoint;
- // m_flags
- enum {
- e_islandFlag = 0x0001,
- e_awakeFlag = 0x0002,
- e_autoSleepFlag = 0x0004,
- e_bulletFlag = 0x0008,
- e_fixedRotationFlag = 0x0010,
- e_enabledFlag = 0x0020,
- e_toiFlag = 0x0040
- };
- b2Body(const b2BodyDef* bd, b2World* world);
- ~b2Body();
- void SynchronizeFixtures();
- void SynchronizeTransform();
- // This is used to prevent connected bodies from colliding.
- // It may lie, depending on the collideConnected flag.
- bool ShouldCollide(const b2Body* other) const;
- void Advance(float t);
- b2BodyType m_type;
- uint16 m_flags;
- int32 m_islandIndex;
- b2Transform m_xf; // the body origin transform
- b2Sweep m_sweep; // the swept motion for CCD
- b2Vec2 m_linearVelocity;
- float m_angularVelocity;
- b2Vec2 m_force;
- float m_torque;
- b2World* m_world;
- b2Body* m_prev;
- b2Body* m_next;
- b2Fixture* m_fixtureList;
- int32 m_fixtureCount;
- b2JointEdge* m_jointList;
- b2ContactEdge* m_contactList;
- float m_mass, m_invMass;
- // Rotational inertia about the center of mass.
- float m_I, m_invI;
- float m_linearDamping;
- float m_angularDamping;
- float m_gravityScale;
- float m_sleepTime;
- b2BodyUserData m_userData;
- };
- inline b2BodyType b2Body::GetType() const {
- return m_type;
- }
- inline const b2Transform& b2Body::GetTransform() const {
- return m_xf;
- }
- inline const b2Vec2& b2Body::GetPosition() const {
- return m_xf.p;
- }
- inline float b2Body::GetAngle() const {
- return m_sweep.a;
- }
- inline const b2Vec2& b2Body::GetWorldCenter() const {
- return m_sweep.c;
- }
- inline const b2Vec2& b2Body::GetLocalCenter() const {
- return m_sweep.localCenter;
- }
- inline void b2Body::SetLinearVelocity(const b2Vec2& v) {
- if (m_type == b2_staticBody) {
- return;
- }
- if (b2Dot(v, v) > 0.0f) {
- SetAwake(true);
- }
- m_linearVelocity = v;
- }
- inline const b2Vec2& b2Body::GetLinearVelocity() const {
- return m_linearVelocity;
- }
- inline void b2Body::SetAngularVelocity(float w) {
- if (m_type == b2_staticBody) {
- return;
- }
- if (w * w > 0.0f) {
- SetAwake(true);
- }
- m_angularVelocity = w;
- }
- inline float b2Body::GetAngularVelocity() const {
- return m_angularVelocity;
- }
- inline float b2Body::GetMass() const {
- return m_mass;
- }
- inline float b2Body::GetInertia() const {
- return m_I + m_mass * b2Dot(m_sweep.localCenter, m_sweep.localCenter);
- }
- inline void b2Body::GetMassData(b2MassData* data) const {
- data->mass = m_mass;
- data->I = m_I + m_mass * b2Dot(m_sweep.localCenter, m_sweep.localCenter);
- data->center = m_sweep.localCenter;
- }
- inline b2Vec2 b2Body::GetWorldPoint(const b2Vec2& localPoint) const {
- return b2Mul(m_xf, localPoint);
- }
- inline b2Vec2 b2Body::GetWorldVector(const b2Vec2& localVector) const {
- return b2Mul(m_xf.q, localVector);
- }
- inline b2Vec2 b2Body::GetLocalPoint(const b2Vec2& worldPoint) const {
- return b2MulT(m_xf, worldPoint);
- }
- inline b2Vec2 b2Body::GetLocalVector(const b2Vec2& worldVector) const {
- return b2MulT(m_xf.q, worldVector);
- }
- inline b2Vec2 b2Body::GetLinearVelocityFromWorldPoint(const b2Vec2& worldPoint) const {
- return m_linearVelocity + b2Cross(m_angularVelocity, worldPoint - m_sweep.c);
- }
- inline b2Vec2 b2Body::GetLinearVelocityFromLocalPoint(const b2Vec2& localPoint) const {
- return GetLinearVelocityFromWorldPoint(GetWorldPoint(localPoint));
- }
- inline float b2Body::GetLinearDamping() const {
- return m_linearDamping;
- }
- inline void b2Body::SetLinearDamping(float linearDamping) {
- m_linearDamping = linearDamping;
- }
- inline float b2Body::GetAngularDamping() const {
- return m_angularDamping;
- }
- inline void b2Body::SetAngularDamping(float angularDamping) {
- m_angularDamping = angularDamping;
- }
- inline float b2Body::GetGravityScale() const {
- return m_gravityScale;
- }
- inline void b2Body::SetGravityScale(float scale) {
- m_gravityScale = scale;
- }
- inline void b2Body::SetBullet(bool flag) {
- if (flag) {
- m_flags |= e_bulletFlag;
- } else {
- m_flags &= ~e_bulletFlag;
- }
- }
- inline bool b2Body::IsBullet() const {
- return (m_flags & e_bulletFlag) == e_bulletFlag;
- }
- inline void b2Body::SetAwake(bool flag) {
- if (m_type == b2_staticBody) {
- return;
- }
- if (flag) {
- m_flags |= e_awakeFlag;
- m_sleepTime = 0.0f;
- } else {
- m_flags &= ~e_awakeFlag;
- m_sleepTime = 0.0f;
- m_linearVelocity.SetZero();
- m_angularVelocity = 0.0f;
- m_force.SetZero();
- m_torque = 0.0f;
- }
- }
- inline bool b2Body::IsAwake() const {
- return (m_flags & e_awakeFlag) == e_awakeFlag;
- }
- inline bool b2Body::IsEnabled() const {
- return (m_flags & e_enabledFlag) == e_enabledFlag;
- }
- inline bool b2Body::IsFixedRotation() const {
- return (m_flags & e_fixedRotationFlag) == e_fixedRotationFlag;
- }
- inline void b2Body::SetSleepingAllowed(bool flag) {
- if (flag) {
- m_flags |= e_autoSleepFlag;
- } else {
- m_flags &= ~e_autoSleepFlag;
- SetAwake(true);
- }
- }
- inline bool b2Body::IsSleepingAllowed() const {
- return (m_flags & e_autoSleepFlag) == e_autoSleepFlag;
- }
- inline b2Fixture* b2Body::GetFixtureList() {
- return m_fixtureList;
- }
- inline const b2Fixture* b2Body::GetFixtureList() const {
- return m_fixtureList;
- }
- inline b2JointEdge* b2Body::GetJointList() {
- return m_jointList;
- }
- inline const b2JointEdge* b2Body::GetJointList() const {
- return m_jointList;
- }
- inline b2ContactEdge* b2Body::GetContactList() {
- return m_contactList;
- }
- inline const b2ContactEdge* b2Body::GetContactList() const {
- return m_contactList;
- }
- inline b2Body* b2Body::GetNext() {
- return m_next;
- }
- inline const b2Body* b2Body::GetNext() const {
- return m_next;
- }
- inline b2BodyUserData& b2Body::GetUserData() {
- return m_userData;
- }
- inline void b2Body::ApplyForce(const b2Vec2& force, const b2Vec2& point, bool wake) {
- if (m_type != b2_dynamicBody) {
- return;
- }
- if (wake && (m_flags & e_awakeFlag) == 0) {
- SetAwake(true);
- }
- // Don't accumulate a force if the body is sleeping.
- if (m_flags & e_awakeFlag) {
- m_force += force;
- m_torque += b2Cross(point - m_sweep.c, force);
- }
- }
- inline void b2Body::ApplyForceToCenter(const b2Vec2& force, bool wake) {
- if (m_type != b2_dynamicBody) {
- return;
- }
- if (wake && (m_flags & e_awakeFlag) == 0) {
- SetAwake(true);
- }
- // Don't accumulate a force if the body is sleeping
- if (m_flags & e_awakeFlag) {
- m_force += force;
- }
- }
- inline void b2Body::ApplyTorque(float torque, bool wake) {
- if (m_type != b2_dynamicBody) {
- return;
- }
- if (wake && (m_flags & e_awakeFlag) == 0) {
- SetAwake(true);
- }
- // Don't accumulate a force if the body is sleeping
- if (m_flags & e_awakeFlag) {
- m_torque += torque;
- }
- }
- inline void b2Body::ApplyLinearImpulse(const b2Vec2& impulse, const b2Vec2& point, bool wake) {
- if (m_type != b2_dynamicBody) {
- return;
- }
- if (wake && (m_flags & e_awakeFlag) == 0) {
- SetAwake(true);
- }
- // Don't accumulate velocity if the body is sleeping
- if (m_flags & e_awakeFlag) {
- m_linearVelocity += m_invMass * impulse;
- m_angularVelocity += m_invI * b2Cross(point - m_sweep.c, impulse);
- }
- }
- inline void b2Body::ApplyLinearImpulseToCenter(const b2Vec2& impulse, bool wake) {
- if (m_type != b2_dynamicBody) {
- return;
- }
- if (wake && (m_flags & e_awakeFlag) == 0) {
- SetAwake(true);
- }
- // Don't accumulate velocity if the body is sleeping
- if (m_flags & e_awakeFlag) {
- m_linearVelocity += m_invMass * impulse;
- }
- }
- inline void b2Body::ApplyAngularImpulse(float impulse, bool wake) {
- if (m_type != b2_dynamicBody) {
- return;
- }
- if (wake && (m_flags & e_awakeFlag) == 0) {
- SetAwake(true);
- }
- // Don't accumulate velocity if the body is sleeping
- if (m_flags & e_awakeFlag) {
- m_angularVelocity += m_invI * impulse;
- }
- }
- inline void b2Body::SynchronizeTransform() {
- m_xf.q.Set(m_sweep.a);
- m_xf.p = m_sweep.c - b2Mul(m_xf.q, m_sweep.localCenter);
- }
- inline void b2Body::Advance(float alpha) {
- // Advance to the new safe time. This doesn't sync the broad-phase.
- m_sweep.Advance(alpha);
- m_sweep.c = m_sweep.c0;
- m_sweep.a = m_sweep.a0;
- m_xf.q.Set(m_sweep.a);
- m_xf.p = m_sweep.c - b2Mul(m_xf.q, m_sweep.localCenter);
- }
- inline b2World* b2Body::GetWorld() {
- return m_world;
- }
- inline const b2World* b2Body::GetWorld() const {
- return m_world;
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_GROWABLE_STACK_H
- #define B2_GROWABLE_STACK_H
- #include <string.h>
- //#include "b2_settings.h"
- /// This is a growable LIFO stack with an initial capacity of N.
- /// If the stack size exceeds the initial capacity, the heap is used
- /// to increase the size of the stack.
- template <typename T, int32 N>
- class b2GrowableStack {
- public:
- b2GrowableStack() {
- m_stack = m_array;
- m_count = 0;
- m_capacity = N;
- }
- ~b2GrowableStack() {
- if (m_stack != m_array) {
- b2Free(m_stack);
- m_stack = nullptr;
- }
- }
- void Push(const T& element) {
- if (m_count == m_capacity) {
- T* old = m_stack;
- m_capacity *= 2;
- m_stack = (T*)b2Alloc(m_capacity * sizeof(T));
- memcpy(m_stack, old, m_count * sizeof(T));
- if (old != m_array) {
- b2Free(old);
- }
- }
- m_stack[m_count] = element;
- ++m_count;
- }
- T Pop() {
- b2Assert(m_count > 0);
- --m_count;
- return m_stack[m_count];
- }
- int32 GetCount() {
- return m_count;
- }
- private:
- T* m_stack;
- T m_array[N];
- int32 m_count;
- int32 m_capacity;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_DYNAMIC_TREE_H
- #define B2_DYNAMIC_TREE_H
- //#include "b2_api.h"
- //#include "b2_collision.h"
- //#include "b2_growable_stack.h"
- #define b2_nullNode (-1)
- /// A node in the dynamic tree. The client does not interact with this directly.
- struct B2_API b2TreeNode {
- bool IsLeaf() const {
- return child1 == b2_nullNode;
- }
- /// Enlarged AABB
- b2AABB aabb;
- void* userData;
- union {
- int32 parent;
- int32 next;
- };
- int32 child1;
- int32 child2;
- // leaf = 0, free node = -1
- int32 height;
- bool moved;
- };
- /// A dynamic AABB tree broad-phase, inspired by Nathanael Presson's btDbvt.
- /// A dynamic tree arranges data in a binary tree to accelerate
- /// queries such as volume queries and ray casts. Leafs are proxies
- /// with an AABB. In the tree we expand the proxy AABB by b2_fatAABBFactor
- /// so that the proxy AABB is bigger than the client object. This allows the client
- /// object to move by small amounts without triggering a tree update.
- ///
- /// Nodes are pooled and relocatable, so we use node indices rather than pointers.
- class B2_API b2DynamicTree {
- public:
- /// Constructing the tree initializes the node pool.
- b2DynamicTree();
- /// Destroy the tree, freeing the node pool.
- ~b2DynamicTree();
- /// Create a proxy. Provide a tight fitting AABB and a userData pointer.
- int32 CreateProxy(const b2AABB& aabb, void* userData);
- /// Destroy a proxy. This asserts if the id is invalid.
- void DestroyProxy(int32 proxyId);
- /// Move a proxy with a swepted AABB. If the proxy has moved outside of its fattened AABB,
- /// then the proxy is removed from the tree and re-inserted. Otherwise
- /// the function returns immediately.
- /// @return true if the proxy was re-inserted.
- bool MoveProxy(int32 proxyId, const b2AABB& aabb1, const b2Vec2& displacement);
- /// Get proxy user data.
- /// @return the proxy user data or 0 if the id is invalid.
- void* GetUserData(int32 proxyId) const;
- bool WasMoved(int32 proxyId) const;
- void ClearMoved(int32 proxyId);
- /// Get the fat AABB for a proxy.
- const b2AABB& GetFatAABB(int32 proxyId) const;
- /// Query an AABB for overlapping proxies. The callback class
- /// is called for each proxy that overlaps the supplied AABB.
- template <typename T>
- void Query(T* callback, const b2AABB& aabb) const;
- /// Ray-cast against the proxies in the tree. This relies on the callback
- /// to perform a exact ray-cast in the case were the proxy contains a shape.
- /// The callback also performs the any collision filtering. This has performance
- /// roughly equal to k * log(n), where k is the number of collisions and n is the
- /// number of proxies in the tree.
- /// @param input the ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1).
- /// @param callback a callback class that is called for each proxy that is hit by the ray.
- template <typename T>
- void RayCast(T* callback, const b2RayCastInput& input) const;
- /// Validate this tree. For testing.
- void Validate() const;
- /// Compute the height of the binary tree in O(N) time. Should not be
- /// called often.
- int32 GetHeight() const;
- /// Get the maximum balance of an node in the tree. The balance is the difference
- /// in height of the two children of a node.
- int32 GetMaxBalance() const;
- /// Get the ratio of the sum of the node areas to the root area.
- float GetAreaRatio() const;
- /// Build an optimal tree. Very expensive. For testing.
- void RebuildBottomUp();
- /// Shift the world origin. Useful for large worlds.
- /// The shift formula is: position -= newOrigin
- /// @param newOrigin the new origin with respect to the old origin
- void ShiftOrigin(const b2Vec2& newOrigin);
- private:
- int32 AllocateNode();
- void FreeNode(int32 node);
- void InsertLeaf(int32 node);
- void RemoveLeaf(int32 node);
- int32 Balance(int32 index);
- int32 ComputeHeight() const;
- int32 ComputeHeight(int32 nodeId) const;
- void ValidateStructure(int32 index) const;
- void ValidateMetrics(int32 index) const;
- int32 m_root;
- b2TreeNode* m_nodes;
- int32 m_nodeCount;
- int32 m_nodeCapacity;
- int32 m_freeList;
- int32 m_insertionCount;
- };
- inline void* b2DynamicTree::GetUserData(int32 proxyId) const {
- b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
- return m_nodes[proxyId].userData;
- }
- inline bool b2DynamicTree::WasMoved(int32 proxyId) const {
- b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
- return m_nodes[proxyId].moved;
- }
- inline void b2DynamicTree::ClearMoved(int32 proxyId) {
- b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
- m_nodes[proxyId].moved = false;
- }
- inline const b2AABB& b2DynamicTree::GetFatAABB(int32 proxyId) const {
- b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
- return m_nodes[proxyId].aabb;
- }
- template <typename T>
- inline void b2DynamicTree::Query(T* callback, const b2AABB& aabb) const {
- b2GrowableStack<int32, 256> stack;
- stack.Push(m_root);
- while (stack.GetCount() > 0) {
- int32 nodeId = stack.Pop();
- if (nodeId == b2_nullNode) {
- continue;
- }
- const b2TreeNode* node = m_nodes + nodeId;
- if (b2TestOverlap(node->aabb, aabb)) {
- if (node->IsLeaf()) {
- bool proceed = callback->QueryCallback(nodeId);
- if (proceed == false) {
- return;
- }
- } else {
- stack.Push(node->child1);
- stack.Push(node->child2);
- }
- }
- }
- }
- template <typename T>
- inline void b2DynamicTree::RayCast(T* callback, const b2RayCastInput& input) const {
- b2Vec2 p1 = input.p1;
- b2Vec2 p2 = input.p2;
- b2Vec2 r = p2 - p1;
- b2Assert(r.LengthSquared() > 0.0f);
- r.Normalize();
- // v is perpendicular to the segment.
- b2Vec2 v = b2Cross(1.0f, r);
- b2Vec2 abs_v = b2Abs(v);
- // Separating axis for segment (Gino, p80).
- // |dot(v, p1 - c)| > dot(|v|, h)
- float maxFraction = input.maxFraction;
- // Build a bounding box for the segment.
- b2AABB segmentAABB;
- {
- b2Vec2 t = p1 + maxFraction * (p2 - p1);
- segmentAABB.lowerBound = b2Min(p1, t);
- segmentAABB.upperBound = b2Max(p1, t);
- }
- b2GrowableStack<int32, 256> stack;
- stack.Push(m_root);
- while (stack.GetCount() > 0) {
- int32 nodeId = stack.Pop();
- if (nodeId == b2_nullNode) {
- continue;
- }
- const b2TreeNode* node = m_nodes + nodeId;
- if (b2TestOverlap(node->aabb, segmentAABB) == false) {
- continue;
- }
- // Separating axis for segment (Gino, p80).
- // |dot(v, p1 - c)| > dot(|v|, h)
- b2Vec2 c = node->aabb.GetCenter();
- b2Vec2 h = node->aabb.GetExtents();
- float separation = b2Abs(b2Dot(v, p1 - c)) - b2Dot(abs_v, h);
- if (separation > 0.0f) {
- continue;
- }
- if (node->IsLeaf()) {
- b2RayCastInput subInput;
- subInput.p1 = input.p1;
- subInput.p2 = input.p2;
- subInput.maxFraction = maxFraction;
- float value = callback->RayCastCallback(subInput, nodeId);
- if (value == 0.0f) {
- // The client has terminated the ray cast.
- return;
- }
- if (value > 0.0f) {
- // Update segment bounding box.
- maxFraction = value;
- b2Vec2 t = p1 + maxFraction * (p2 - p1);
- segmentAABB.lowerBound = b2Min(p1, t);
- segmentAABB.upperBound = b2Max(p1, t);
- }
- } else {
- stack.Push(node->child1);
- stack.Push(node->child2);
- }
- }
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_BROAD_PHASE_H
- #define B2_BROAD_PHASE_H
- //#include "b2_api.h"
- //#include "b2_settings.h"
- //#include "b2_collision.h"
- //#include "b2_dynamic_tree.h"
- struct B2_API b2Pair {
- int32 proxyIdA;
- int32 proxyIdB;
- };
- /// The broad-phase is used for computing pairs and performing volume queries and ray casts.
- /// This broad-phase does not persist pairs. Instead, this reports potentially new pairs.
- /// It is up to the client to consume the new pairs and to track subsequent overlap.
- class B2_API b2BroadPhase {
- public:
- enum {
- e_nullProxy = -1
- };
- b2BroadPhase();
- ~b2BroadPhase();
- /// Create a proxy with an initial AABB. Pairs are not reported until
- /// UpdatePairs is called.
- int32 CreateProxy(const b2AABB& aabb, void* userData);
- /// Destroy a proxy. It is up to the client to remove any pairs.
- void DestroyProxy(int32 proxyId);
- /// Call MoveProxy as many times as you like, then when you are done
- /// call UpdatePairs to finalized the proxy pairs (for your time step).
- void MoveProxy(int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement);
- /// Call to trigger a re-processing of it's pairs on the next call to UpdatePairs.
- void TouchProxy(int32 proxyId);
- /// Get the fat AABB for a proxy.
- const b2AABB& GetFatAABB(int32 proxyId) const;
- /// Get user data from a proxy. Returns nullptr if the id is invalid.
- void* GetUserData(int32 proxyId) const;
- /// Test overlap of fat AABBs.
- bool TestOverlap(int32 proxyIdA, int32 proxyIdB) const;
- /// Get the number of proxies.
- int32 GetProxyCount() const;
- /// Update the pairs. This results in pair callbacks. This can only add pairs.
- template <typename T>
- void UpdatePairs(T* callback);
- /// Query an AABB for overlapping proxies. The callback class
- /// is called for each proxy that overlaps the supplied AABB.
- template <typename T>
- void Query(T* callback, const b2AABB& aabb) const;
- /// Ray-cast against the proxies in the tree. This relies on the callback
- /// to perform a exact ray-cast in the case were the proxy contains a shape.
- /// The callback also performs the any collision filtering. This has performance
- /// roughly equal to k * log(n), where k is the number of collisions and n is the
- /// number of proxies in the tree.
- /// @param input the ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1).
- /// @param callback a callback class that is called for each proxy that is hit by the ray.
- template <typename T>
- void RayCast(T* callback, const b2RayCastInput& input) const;
- /// Get the height of the embedded tree.
- int32 GetTreeHeight() const;
- /// Get the balance of the embedded tree.
- int32 GetTreeBalance() const;
- /// Get the quality metric of the embedded tree.
- float GetTreeQuality() const;
- /// Shift the world origin. Useful for large worlds.
- /// The shift formula is: position -= newOrigin
- /// @param newOrigin the new origin with respect to the old origin
- void ShiftOrigin(const b2Vec2& newOrigin);
- private:
- friend class b2DynamicTree;
- void BufferMove(int32 proxyId);
- void UnBufferMove(int32 proxyId);
- bool QueryCallback(int32 proxyId);
- b2DynamicTree m_tree;
- int32 m_proxyCount;
- int32* m_moveBuffer;
- int32 m_moveCapacity;
- int32 m_moveCount;
- b2Pair* m_pairBuffer;
- int32 m_pairCapacity;
- int32 m_pairCount;
- int32 m_queryProxyId;
- };
- inline void* b2BroadPhase::GetUserData(int32 proxyId) const {
- return m_tree.GetUserData(proxyId);
- }
- inline bool b2BroadPhase::TestOverlap(int32 proxyIdA, int32 proxyIdB) const {
- const b2AABB& aabbA = m_tree.GetFatAABB(proxyIdA);
- const b2AABB& aabbB = m_tree.GetFatAABB(proxyIdB);
- return b2TestOverlap(aabbA, aabbB);
- }
- inline const b2AABB& b2BroadPhase::GetFatAABB(int32 proxyId) const {
- return m_tree.GetFatAABB(proxyId);
- }
- inline int32 b2BroadPhase::GetProxyCount() const {
- return m_proxyCount;
- }
- inline int32 b2BroadPhase::GetTreeHeight() const {
- return m_tree.GetHeight();
- }
- inline int32 b2BroadPhase::GetTreeBalance() const {
- return m_tree.GetMaxBalance();
- }
- inline float b2BroadPhase::GetTreeQuality() const {
- return m_tree.GetAreaRatio();
- }
- template <typename T>
- void b2BroadPhase::UpdatePairs(T* callback) {
- // Reset pair buffer
- m_pairCount = 0;
- // Perform tree queries for all moving proxies.
- for (int32 i = 0; i < m_moveCount; ++i) {
- m_queryProxyId = m_moveBuffer[i];
- if (m_queryProxyId == e_nullProxy) {
- continue;
- }
- // We have to query the tree with the fat AABB so that
- // we don't fail to create a pair that may touch later.
- const b2AABB& fatAABB = m_tree.GetFatAABB(m_queryProxyId);
- // Query tree, create pairs and add them pair buffer.
- m_tree.Query(this, fatAABB);
- }
- // Send pairs to caller
- for (int32 i = 0; i < m_pairCount; ++i) {
- b2Pair* primaryPair = m_pairBuffer + i;
- void* userDataA = m_tree.GetUserData(primaryPair->proxyIdA);
- void* userDataB = m_tree.GetUserData(primaryPair->proxyIdB);
- callback->AddPair(userDataA, userDataB);
- }
- // Clear move flags
- for (int32 i = 0; i < m_moveCount; ++i) {
- int32 proxyId = m_moveBuffer[i];
- if (proxyId == e_nullProxy) {
- continue;
- }
- m_tree.ClearMoved(proxyId);
- }
- // Reset move buffer
- m_moveCount = 0;
- }
- template <typename T>
- inline void b2BroadPhase::Query(T* callback, const b2AABB& aabb) const {
- m_tree.Query(callback, aabb);
- }
- template <typename T>
- inline void b2BroadPhase::RayCast(T* callback, const b2RayCastInput& input) const {
- m_tree.RayCast(callback, input);
- }
- inline void b2BroadPhase::ShiftOrigin(const b2Vec2& newOrigin) {
- m_tree.ShiftOrigin(newOrigin);
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_CHAIN_SHAPE_H
- #define B2_CHAIN_SHAPE_H
- //#include "b2_api.h"
- //#include "b2_shape.h"
- class b2EdgeShape;
- /// A chain shape is a free form sequence of line segments.
- /// The chain has one-sided collision, with the surface normal pointing to the right of the edge.
- /// This provides a counter-clockwise winding like the polygon shape.
- /// Connectivity information is used to create smooth collisions.
- /// @warning the chain will not collide properly if there are self-intersections.
- class B2_API b2ChainShape : public b2Shape {
- public:
- b2ChainShape();
- /// The destructor frees the vertices using b2Free.
- ~b2ChainShape();
- /// Clear all data.
- void Clear();
- /// Create a loop. This automatically adjusts connectivity.
- /// @param vertices an array of vertices, these are copied
- /// @param count the vertex count
- void CreateLoop(const b2Vec2* vertices, int32 count);
- /// Create a chain with ghost vertices to connect multiple chains together.
- /// @param vertices an array of vertices, these are copied
- /// @param count the vertex count
- /// @param prevVertex previous vertex from chain that connects to the start
- /// @param nextVertex next vertex from chain that connects to the end
- void CreateChain(const b2Vec2* vertices, int32 count,
- const b2Vec2& prevVertex, const b2Vec2& nextVertex);
- /// Implement b2Shape. Vertices are cloned using b2Alloc.
- b2Shape* Clone(b2BlockAllocator* allocator) const override;
- /// @see b2Shape::GetChildCount
- int32 GetChildCount() const override;
- /// Get a child edge.
- void GetChildEdge(b2EdgeShape* edge, int32 index) const;
- /// This always return false.
- /// @see b2Shape::TestPoint
- bool TestPoint(const b2Transform& transform, const b2Vec2& p) const override;
- /// Implement b2Shape.
- bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
- const b2Transform& transform, int32 childIndex) const override;
- /// @see b2Shape::ComputeAABB
- void ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const override;
- /// Chains have zero mass.
- /// @see b2Shape::ComputeMass
- void ComputeMass(b2MassData* massData, float density) const override;
- /// The vertices. Owned by this class.
- b2Vec2* m_vertices;
- /// The vertex count.
- int32 m_count;
- b2Vec2 m_prevVertex, m_nextVertex;
- };
- inline b2ChainShape::b2ChainShape() {
- m_type = e_chain;
- m_radius = b2_polygonRadius;
- m_vertices = nullptr;
- m_count = 0;
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_CIRCLE_SHAPE_H
- #define B2_CIRCLE_SHAPE_H
- //#include "b2_api.h"
- //#include "b2_shape.h"
- /// A solid circle shape
- class B2_API b2CircleShape : public b2Shape {
- public:
- b2CircleShape();
- /// Implement b2Shape.
- b2Shape* Clone(b2BlockAllocator* allocator) const override;
- /// @see b2Shape::GetChildCount
- int32 GetChildCount() const override;
- /// Implement b2Shape.
- bool TestPoint(const b2Transform& transform, const b2Vec2& p) const override;
- /// Implement b2Shape.
- /// @note because the circle is solid, rays that start inside do not hit because the normal is
- /// not defined.
- bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
- const b2Transform& transform, int32 childIndex) const override;
- /// @see b2Shape::ComputeAABB
- void ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const override;
- /// @see b2Shape::ComputeMass
- void ComputeMass(b2MassData* massData, float density) const override;
- /// Position
- b2Vec2 m_p;
- };
- inline b2CircleShape::b2CircleShape() {
- m_type = e_circle;
- m_radius = 0.0f;
- m_p.SetZero();
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_COMMON_H
- #define B2_COMMON_H
- //#include "b2_settings.h"
- /// @file
- /// Global tuning constants based on meters-kilograms-seconds (MKS) units.
- ///
- // Collision
- // Dynamics
- /// Maximum number of contacts to be handled to solve a TOI impact.
- #define b2_maxTOIContacts 32
- /// The maximum linear position correction used when solving constraints. This helps to
- /// prevent overshoot. Meters.
- #define b2_maxLinearCorrection (0.2f * b2_lengthUnitsPerMeter)
- /// The maximum angular position correction used when solving constraints. This helps to
- /// prevent overshoot.
- #define b2_maxAngularCorrection (8.0f / 180.0f * b2_pi)
- /// The maximum linear translation of a body per step. This limit is very large and is used
- /// to prevent numerical problems. You shouldn't need to adjust this. Meters.
- #define b2_maxTranslation (2.0f * b2_lengthUnitsPerMeter)
- #define b2_maxTranslationSquared (b2_maxTranslation * b2_maxTranslation)
- /// The maximum angular velocity of a body. This limit is very large and is used
- /// to prevent numerical problems. You shouldn't need to adjust this.
- #define b2_maxRotation (0.5f * b2_pi)
- #define b2_maxRotationSquared (b2_maxRotation * b2_maxRotation)
- /// This scale factor controls how fast overlap is resolved. Ideally this would be 1 so
- /// that overlap is removed in one time step. However using values close to 1 often lead
- /// to overshoot.
- #define b2_baumgarte 0.2f
- #define b2_toiBaumgarte 0.75f
- // Sleep
- /// The time that a body must be still before it will go to sleep.
- #define b2_timeToSleep 0.5f
- /// A body cannot sleep if its linear velocity is above this tolerance.
- #define b2_linearSleepTolerance (0.01f * b2_lengthUnitsPerMeter)
- /// A body cannot sleep if its angular velocity is above this tolerance.
- #define b2_angularSleepTolerance (2.0f / 180.0f * b2_pi)
- /// Dump to a file. Only one dump file allowed at a time.
- void b2OpenDump(const char* fileName);
- void b2Dump(const char* string, ...);
- void b2CloseDump();
- /// Version numbering scheme.
- /// See http://en.wikipedia.org/wiki/Software_versioning
- struct b2Version {
- int32 major; ///< significant changes
- int32 minor; ///< incremental changes
- int32 revision; ///< bug fixes
- };
- /// Current version.
- extern B2_API b2Version b2_version;
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_FIXTURE_H
- #define B2_FIXTURE_H
- //#include "b2_api.h"
- //#include "b2_body.h"
- //#include "b2_collision.h"
- //#include "b2_shape.h"
- class b2BlockAllocator;
- class b2Body;
- class b2BroadPhase;
- class b2Fixture;
- /// This holds contact filtering data.
- struct B2_API b2Filter {
- b2Filter() {
- categoryBits = 0x0001;
- maskBits = 0xFFFF;
- groupIndex = 0;
- }
- /// The collision category bits. Normally you would just set one bit.
- uint16 categoryBits;
- /// The collision mask bits. This states the categories that this
- /// shape would accept for collision.
- uint16 maskBits;
- /// Collision groups allow a certain group of objects to never collide (negative)
- /// or always collide (positive). Zero means no collision group. Non-zero group
- /// filtering always wins against the mask bits.
- int16 groupIndex;
- };
- /// A fixture definition is used to create a fixture. This class defines an
- /// abstract fixture definition. You can reuse fixture definitions safely.
- struct B2_API b2FixtureDef {
- /// The constructor sets the default fixture definition values.
- b2FixtureDef() {
- shape = nullptr;
- friction = 0.2f;
- restitution = 0.0f;
- restitutionThreshold = 1.0f * b2_lengthUnitsPerMeter;
- density = 0.0f;
- isSensor = false;
- }
- /// The shape, this must be set. The shape will be cloned, so you
- /// can create the shape on the stack.
- const b2Shape* shape;
- /// Use this to store application specific fixture data.
- b2FixtureUserData userData;
- /// The friction coefficient, usually in the range [0,1].
- float friction;
- /// The restitution (elasticity) usually in the range [0,1].
- float restitution;
- /// Restitution velocity threshold, usually in m/s. Collisions above this
- /// speed have restitution applied (will bounce).
- float restitutionThreshold;
- /// The density, usually in kg/m^2.
- float density;
- /// A sensor shape collects contact information but never generates a collision
- /// response.
- bool isSensor;
- /// Contact filtering data.
- b2Filter filter;
- };
- /// This proxy is used internally to connect fixtures to the broad-phase.
- struct B2_API b2FixtureProxy {
- b2AABB aabb;
- b2Fixture* fixture;
- int32 childIndex;
- int32 proxyId;
- };
- /// A fixture is used to attach a shape to a body for collision detection. A fixture
- /// inherits its transform from its parent. Fixtures hold additional non-geometric data
- /// such as friction, collision filters, etc.
- /// Fixtures are created via b2Body::CreateFixture.
- /// @warning you cannot reuse fixtures.
- class B2_API b2Fixture {
- public:
- /// Get the type of the child shape. You can use this to down cast to the concrete shape.
- /// @return the shape type.
- b2Shape::Type GetType() const;
- /// Get the child shape. You can modify the child shape, however you should not change the
- /// number of vertices because this will crash some collision caching mechanisms.
- /// Manipulating the shape may lead to non-physical behavior.
- b2Shape* GetShape();
- const b2Shape* GetShape() const;
- /// Set if this fixture is a sensor.
- void SetSensor(bool sensor);
- /// Is this fixture a sensor (non-solid)?
- /// @return the true if the shape is a sensor.
- bool IsSensor() const;
- /// Set the contact filtering data. This will not update contacts until the next time
- /// step when either parent body is active and awake.
- /// This automatically calls Refilter.
- void SetFilterData(const b2Filter& filter);
- /// Get the contact filtering data.
- const b2Filter& GetFilterData() const;
- /// Call this if you want to establish collision that was previously disabled by b2ContactFilter::ShouldCollide.
- void Refilter();
- /// Get the parent body of this fixture. This is nullptr if the fixture is not attached.
- /// @return the parent body.
- b2Body* GetBody();
- const b2Body* GetBody() const;
- /// Get the next fixture in the parent body's fixture list.
- /// @return the next shape.
- b2Fixture* GetNext();
- const b2Fixture* GetNext() const;
- /// Get the user data that was assigned in the fixture definition. Use this to
- /// store your application specific data.
- b2FixtureUserData& GetUserData();
- /// Test a point for containment in this fixture.
- /// @param p a point in world coordinates.
- bool TestPoint(const b2Vec2& p) const;
- /// Cast a ray against this shape.
- /// @param output the ray-cast results.
- /// @param input the ray-cast input parameters.
- /// @param childIndex the child shape index (e.g. edge index)
- bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input, int32 childIndex) const;
- /// Get the mass data for this fixture. The mass data is based on the density and
- /// the shape. The rotational inertia is about the shape's origin. This operation
- /// may be expensive.
- void GetMassData(b2MassData* massData) const;
- /// Set the density of this fixture. This will _not_ automatically adjust the mass
- /// of the body. You must call b2Body::ResetMassData to update the body's mass.
- void SetDensity(float density);
- /// Get the density of this fixture.
- float GetDensity() const;
- /// Get the coefficient of friction.
- float GetFriction() const;
- /// Set the coefficient of friction. This will _not_ change the friction of
- /// existing contacts.
- void SetFriction(float friction);
- /// Get the coefficient of restitution.
- float GetRestitution() const;
- /// Set the coefficient of restitution. This will _not_ change the restitution of
- /// existing contacts.
- void SetRestitution(float restitution);
- /// Get the restitution velocity threshold.
- float GetRestitutionThreshold() const;
- /// Set the restitution threshold. This will _not_ change the restitution threshold of
- /// existing contacts.
- void SetRestitutionThreshold(float threshold);
- /// Get the fixture's AABB. This AABB may be enlarge and/or stale.
- /// If you need a more accurate AABB, compute it using the shape and
- /// the body transform.
- const b2AABB& GetAABB(int32 childIndex) const;
- /// Dump this fixture to the log file.
- void Dump(int32 bodyIndex);
- protected:
- friend class b2Body;
- friend class b2World;
- friend class b2Contact;
- friend class b2ContactManager;
- b2Fixture();
- // We need separation create/destroy functions from the constructor/destructor because
- // the destructor cannot access the allocator (no destructor arguments allowed by C++).
- void Create(b2BlockAllocator* allocator, b2Body* body, const b2FixtureDef* def);
- void Destroy(b2BlockAllocator* allocator);
- // These support body activation/deactivation.
- void CreateProxies(b2BroadPhase* broadPhase, const b2Transform& xf);
- void DestroyProxies(b2BroadPhase* broadPhase);
- void Synchronize(b2BroadPhase* broadPhase, const b2Transform& xf1, const b2Transform& xf2);
- float m_density;
- b2Fixture* m_next;
- b2Body* m_body;
- b2Shape* m_shape;
- float m_friction;
- float m_restitution;
- float m_restitutionThreshold;
- b2FixtureProxy* m_proxies;
- int32 m_proxyCount;
- b2Filter m_filter;
- bool m_isSensor;
- b2FixtureUserData m_userData;
- };
- inline b2Shape::Type b2Fixture::GetType() const {
- return m_shape->GetType();
- }
- inline b2Shape* b2Fixture::GetShape() {
- return m_shape;
- }
- inline const b2Shape* b2Fixture::GetShape() const {
- return m_shape;
- }
- inline bool b2Fixture::IsSensor() const {
- return m_isSensor;
- }
- inline const b2Filter& b2Fixture::GetFilterData() const {
- return m_filter;
- }
- inline b2FixtureUserData& b2Fixture::GetUserData() {
- return m_userData;
- }
- inline b2Body* b2Fixture::GetBody() {
- return m_body;
- }
- inline const b2Body* b2Fixture::GetBody() const {
- return m_body;
- }
- inline b2Fixture* b2Fixture::GetNext() {
- return m_next;
- }
- inline const b2Fixture* b2Fixture::GetNext() const {
- return m_next;
- }
- inline void b2Fixture::SetDensity(float density) {
- b2Assert(b2IsValid(density) && density >= 0.0f);
- m_density = density;
- }
- inline float b2Fixture::GetDensity() const {
- return m_density;
- }
- inline float b2Fixture::GetFriction() const {
- return m_friction;
- }
- inline void b2Fixture::SetFriction(float friction) {
- m_friction = friction;
- }
- inline float b2Fixture::GetRestitution() const {
- return m_restitution;
- }
- inline void b2Fixture::SetRestitution(float restitution) {
- m_restitution = restitution;
- }
- inline float b2Fixture::GetRestitutionThreshold() const {
- return m_restitutionThreshold;
- }
- inline void b2Fixture::SetRestitutionThreshold(float threshold) {
- m_restitutionThreshold = threshold;
- }
- inline bool b2Fixture::TestPoint(const b2Vec2& p) const {
- return m_shape->TestPoint(m_body->GetTransform(), p);
- }
- inline bool b2Fixture::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, int32 childIndex) const {
- return m_shape->RayCast(output, input, m_body->GetTransform(), childIndex);
- }
- inline void b2Fixture::GetMassData(b2MassData* massData) const {
- m_shape->ComputeMass(massData, m_density);
- }
- inline const b2AABB& b2Fixture::GetAABB(int32 childIndex) const {
- b2Assert(0 <= childIndex && childIndex < m_proxyCount);
- return m_proxies[childIndex].aabb;
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_CONTACT_H
- #define B2_CONTACT_H
- //#include "b2_api.h"
- //#include "b2_collision.h"
- //#include "b2_fixture.h"
- //#include "b2_math.h"
- //#include "b2_shape.h"
- class b2Body;
- class b2Contact;
- class b2Fixture;
- class b2World;
- class b2BlockAllocator;
- class b2StackAllocator;
- class b2ContactListener;
- /// Friction mixing law. The idea is to allow either fixture to drive the friction to zero.
- /// For example, anything slides on ice.
- inline float b2MixFriction(float friction1, float friction2) {
- return b2Sqrt(friction1 * friction2);
- }
- /// Restitution mixing law. The idea is allow for anything to bounce off an inelastic surface.
- /// For example, a superball bounces on anything.
- inline float b2MixRestitution(float restitution1, float restitution2) {
- return restitution1 > restitution2 ? restitution1 : restitution2;
- }
- /// Restitution mixing law. This picks the lowest value.
- inline float b2MixRestitutionThreshold(float threshold1, float threshold2) {
- return threshold1 < threshold2 ? threshold1 : threshold2;
- }
- typedef b2Contact* b2ContactCreateFcn(b2Fixture* fixtureA, int32 indexA,
- b2Fixture* fixtureB, int32 indexB,
- b2BlockAllocator* allocator);
- typedef void b2ContactDestroyFcn(b2Contact* contact, b2BlockAllocator* allocator);
- struct B2_API b2ContactRegister {
- b2ContactCreateFcn* createFcn;
- b2ContactDestroyFcn* destroyFcn;
- bool primary;
- };
- /// A contact edge is used to connect bodies and contacts together
- /// in a contact graph where each body is a node and each contact
- /// is an edge. A contact edge belongs to a doubly linked list
- /// maintained in each attached body. Each contact has two contact
- /// nodes, one for each attached body.
- struct B2_API b2ContactEdge {
- b2Body* other; ///< provides quick access to the other body attached.
- b2Contact* contact; ///< the contact
- b2ContactEdge* prev; ///< the previous contact edge in the body's contact list
- b2ContactEdge* next; ///< the next contact edge in the body's contact list
- };
- /// The class manages contact between two shapes. A contact exists for each overlapping
- /// AABB in the broad-phase (except if filtered). Therefore a contact object may exist
- /// that has no contact points.
- class B2_API b2Contact {
- public:
- /// Get the contact manifold. Do not modify the manifold unless you understand the
- /// internals of Box2D.
- b2Manifold* GetManifold();
- const b2Manifold* GetManifold() const;
- /// Get the world manifold.
- void GetWorldManifold(b2WorldManifold* worldManifold) const;
- /// Is this contact touching?
- bool IsTouching() const;
- /// Enable/disable this contact. This can be used inside the pre-solve
- /// contact listener. The contact is only disabled for the current
- /// time step (or sub-step in continuous collisions).
- void SetEnabled(bool flag);
- /// Has this contact been disabled?
- bool IsEnabled() const;
- /// Get the next contact in the world's contact list.
- b2Contact* GetNext();
- const b2Contact* GetNext() const;
- /// Get fixture A in this contact.
- b2Fixture* GetFixtureA();
- const b2Fixture* GetFixtureA() const;
- /// Get the child primitive index for fixture A.
- int32 GetChildIndexA() const;
- /// Get fixture B in this contact.
- b2Fixture* GetFixtureB();
- const b2Fixture* GetFixtureB() const;
- /// Get the child primitive index for fixture B.
- int32 GetChildIndexB() const;
- /// Override the default friction mixture. You can call this in b2ContactListener::PreSolve.
- /// This value persists until set or reset.
- void SetFriction(float friction);
- /// Get the friction.
- float GetFriction() const;
- /// Reset the friction mixture to the default value.
- void ResetFriction();
- /// Override the default restitution mixture. You can call this in b2ContactListener::PreSolve.
- /// The value persists until you set or reset.
- void SetRestitution(float restitution);
- /// Get the restitution.
- float GetRestitution() const;
- /// Reset the restitution to the default value.
- void ResetRestitution();
- /// Override the default restitution velocity threshold mixture. You can call this in b2ContactListener::PreSolve.
- /// The value persists until you set or reset.
- void SetRestitutionThreshold(float threshold);
- /// Get the restitution threshold.
- float GetRestitutionThreshold() const;
- /// Reset the restitution threshold to the default value.
- void ResetRestitutionThreshold();
- /// Set the desired tangent speed for a conveyor belt behavior. In meters per second.
- void SetTangentSpeed(float speed);
- /// Get the desired tangent speed. In meters per second.
- float GetTangentSpeed() const;
- /// Evaluate this contact with your own manifold and transforms.
- virtual void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) = 0;
- protected:
- friend class b2ContactManager;
- friend class b2World;
- friend class b2ContactSolver;
- friend class b2Body;
- friend class b2Fixture;
- // Flags stored in m_flags
- enum {
- // Used when crawling contact graph when forming islands.
- e_islandFlag = 0x0001,
- // Set when the shapes are touching.
- e_touchingFlag = 0x0002,
- // This contact can be disabled (by user)
- e_enabledFlag = 0x0004,
- // This contact needs filtering because a fixture filter was changed.
- e_filterFlag = 0x0008,
- // This bullet contact had a TOI event
- e_bulletHitFlag = 0x0010,
- // This contact has a valid TOI in m_toi
- e_toiFlag = 0x0020
- };
- /// Flag this contact for filtering. Filtering will occur the next time step.
- void FlagForFiltering();
- static void AddType(b2ContactCreateFcn* createFcn, b2ContactDestroyFcn* destroyFcn,
- b2Shape::Type typeA, b2Shape::Type typeB);
- static void InitializeRegisters();
- static b2Contact* Create(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator);
- static void Destroy(b2Contact* contact, b2Shape::Type typeA, b2Shape::Type typeB, b2BlockAllocator* allocator);
- static void Destroy(b2Contact* contact, b2BlockAllocator* allocator);
- b2Contact() : m_fixtureA(nullptr), m_fixtureB(nullptr) {}
- b2Contact(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB);
- virtual ~b2Contact() {}
- void Update(b2ContactListener* listener);
- static b2ContactRegister s_registers[b2Shape::e_typeCount][b2Shape::e_typeCount];
- static bool s_initialized;
- uint32 m_flags;
- // World pool and list pointers.
- b2Contact* m_prev;
- b2Contact* m_next;
- // Nodes for connecting bodies.
- b2ContactEdge m_nodeA;
- b2ContactEdge m_nodeB;
- b2Fixture* m_fixtureA;
- b2Fixture* m_fixtureB;
- int32 m_indexA;
- int32 m_indexB;
- b2Manifold m_manifold;
- int32 m_toiCount;
- float m_toi;
- float m_friction;
- float m_restitution;
- float m_restitutionThreshold;
- float m_tangentSpeed;
- };
- inline b2Manifold* b2Contact::GetManifold() {
- return &m_manifold;
- }
- inline const b2Manifold* b2Contact::GetManifold() const {
- return &m_manifold;
- }
- inline void b2Contact::GetWorldManifold(b2WorldManifold* worldManifold) const {
- const b2Body* bodyA = m_fixtureA->GetBody();
- const b2Body* bodyB = m_fixtureB->GetBody();
- const b2Shape* shapeA = m_fixtureA->GetShape();
- const b2Shape* shapeB = m_fixtureB->GetShape();
- worldManifold->Initialize(&m_manifold, bodyA->GetTransform(), shapeA->m_radius, bodyB->GetTransform(), shapeB->m_radius);
- }
- inline void b2Contact::SetEnabled(bool flag) {
- if (flag) {
- m_flags |= e_enabledFlag;
- } else {
- m_flags &= ~e_enabledFlag;
- }
- }
- inline bool b2Contact::IsEnabled() const {
- return (m_flags & e_enabledFlag) == e_enabledFlag;
- }
- inline bool b2Contact::IsTouching() const {
- return (m_flags & e_touchingFlag) == e_touchingFlag;
- }
- inline b2Contact* b2Contact::GetNext() {
- return m_next;
- }
- inline const b2Contact* b2Contact::GetNext() const {
- return m_next;
- }
- inline b2Fixture* b2Contact::GetFixtureA() {
- return m_fixtureA;
- }
- inline const b2Fixture* b2Contact::GetFixtureA() const {
- return m_fixtureA;
- }
- inline b2Fixture* b2Contact::GetFixtureB() {
- return m_fixtureB;
- }
- inline int32 b2Contact::GetChildIndexA() const {
- return m_indexA;
- }
- inline const b2Fixture* b2Contact::GetFixtureB() const {
- return m_fixtureB;
- }
- inline int32 b2Contact::GetChildIndexB() const {
- return m_indexB;
- }
- inline void b2Contact::FlagForFiltering() {
- m_flags |= e_filterFlag;
- }
- inline void b2Contact::SetFriction(float friction) {
- m_friction = friction;
- }
- inline float b2Contact::GetFriction() const {
- return m_friction;
- }
- inline void b2Contact::ResetFriction() {
- m_friction = b2MixFriction(m_fixtureA->m_friction, m_fixtureB->m_friction);
- }
- inline void b2Contact::SetRestitution(float restitution) {
- m_restitution = restitution;
- }
- inline float b2Contact::GetRestitution() const {
- return m_restitution;
- }
- inline void b2Contact::ResetRestitution() {
- m_restitution = b2MixRestitution(m_fixtureA->m_restitution, m_fixtureB->m_restitution);
- }
- inline void b2Contact::SetRestitutionThreshold(float threshold) {
- m_restitutionThreshold = threshold;
- }
- inline float b2Contact::GetRestitutionThreshold() const {
- return m_restitutionThreshold;
- }
- inline void b2Contact::ResetRestitutionThreshold() {
- m_restitutionThreshold = b2MixRestitutionThreshold(m_fixtureA->m_restitutionThreshold, m_fixtureB->m_restitutionThreshold);
- }
- inline void b2Contact::SetTangentSpeed(float speed) {
- m_tangentSpeed = speed;
- }
- inline float b2Contact::GetTangentSpeed() const {
- return m_tangentSpeed;
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_CONTACT_MANAGER_H
- #define B2_CONTACT_MANAGER_H
- //#include "b2_api.h"
- //#include "b2_broad_phase.h"
- class b2Contact;
- class b2ContactFilter;
- class b2ContactListener;
- class b2BlockAllocator;
- // Delegate of b2World.
- class B2_API b2ContactManager {
- public:
- b2ContactManager();
- // Broad-phase callback.
- void AddPair(void* proxyUserDataA, void* proxyUserDataB);
- void FindNewContacts();
- void Destroy(b2Contact* c);
- void Collide();
- b2BroadPhase m_broadPhase;
- b2Contact* m_contactList;
- int32 m_contactCount;
- b2ContactFilter* m_contactFilter;
- b2ContactListener* m_contactListener;
- b2BlockAllocator* m_allocator;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_DISTANCE_H
- #define B2_DISTANCE_H
- //#include "b2_api.h"
- //#include "b2_math.h"
- class b2Shape;
- /// A distance proxy is used by the GJK algorithm.
- /// It encapsulates any shape.
- struct B2_API b2DistanceProxy {
- b2DistanceProxy() : m_vertices(nullptr), m_count(0), m_radius(0.0f) {}
- /// Initialize the proxy using the given shape. The shape
- /// must remain in scope while the proxy is in use.
- void Set(const b2Shape* shape, int32 index);
- /// Initialize the proxy using a vertex cloud and radius. The vertices
- /// must remain in scope while the proxy is in use.
- void Set(const b2Vec2* vertices, int32 count, float radius);
- /// Get the supporting vertex index in the given direction.
- int32 GetSupport(const b2Vec2& d) const;
- /// Get the supporting vertex in the given direction.
- const b2Vec2& GetSupportVertex(const b2Vec2& d) const;
- /// Get the vertex count.
- int32 GetVertexCount() const;
- /// Get a vertex by index. Used by b2Distance.
- const b2Vec2& GetVertex(int32 index) const;
- b2Vec2 m_buffer[2];
- const b2Vec2* m_vertices;
- int32 m_count;
- float m_radius;
- };
- /// Used to warm start b2Distance.
- /// Set count to zero on first call.
- struct B2_API b2SimplexCache {
- float metric; ///< length or area
- uint16 count;
- uint8 indexA[3]; ///< vertices on shape A
- uint8 indexB[3]; ///< vertices on shape B
- };
- /// Input for b2Distance.
- /// You have to option to use the shape radii
- /// in the computation. Even
- struct B2_API b2DistanceInput {
- b2DistanceProxy proxyA;
- b2DistanceProxy proxyB;
- b2Transform transformA;
- b2Transform transformB;
- bool useRadii;
- };
- /// Output for b2Distance.
- struct B2_API b2DistanceOutput {
- b2Vec2 pointA; ///< closest point on shapeA
- b2Vec2 pointB; ///< closest point on shapeB
- float distance;
- int32 iterations; ///< number of GJK iterations used
- };
- /// Compute the closest points between two shapes. Supports any combination of:
- /// b2CircleShape, b2PolygonShape, b2EdgeShape. The simplex cache is input/output.
- /// On the first call set b2SimplexCache.count to zero.
- B2_API void b2Distance(b2DistanceOutput* output,
- b2SimplexCache* cache,
- const b2DistanceInput* input);
- /// Input parameters for b2ShapeCast
- struct B2_API b2ShapeCastInput {
- b2DistanceProxy proxyA;
- b2DistanceProxy proxyB;
- b2Transform transformA;
- b2Transform transformB;
- b2Vec2 translationB;
- };
- /// Output results for b2ShapeCast
- struct B2_API b2ShapeCastOutput {
- b2Vec2 point;
- b2Vec2 normal;
- float lambda;
- int32 iterations;
- };
- /// Perform a linear shape cast of shape B moving and shape A fixed. Determines the hit point, normal, and translation fraction.
- /// @returns true if hit, false if there is no hit or an initial overlap
- B2_API bool b2ShapeCast(b2ShapeCastOutput* output, const b2ShapeCastInput* input);
- //////////////////////////////////////////////////////////////////////////
- inline int32 b2DistanceProxy::GetVertexCount() const {
- return m_count;
- }
- inline const b2Vec2& b2DistanceProxy::GetVertex(int32 index) const {
- b2Assert(0 <= index && index < m_count);
- return m_vertices[index];
- }
- inline int32 b2DistanceProxy::GetSupport(const b2Vec2& d) const {
- int32 bestIndex = 0;
- float bestValue = b2Dot(m_vertices[0], d);
- for (int32 i = 1; i < m_count; ++i) {
- float value = b2Dot(m_vertices[i], d);
- if (value > bestValue) {
- bestIndex = i;
- bestValue = value;
- }
- }
- return bestIndex;
- }
- inline const b2Vec2& b2DistanceProxy::GetSupportVertex(const b2Vec2& d) const {
- int32 bestIndex = 0;
- float bestValue = b2Dot(m_vertices[0], d);
- for (int32 i = 1; i < m_count; ++i) {
- float value = b2Dot(m_vertices[i], d);
- if (value > bestValue) {
- bestIndex = i;
- bestValue = value;
- }
- }
- return m_vertices[bestIndex];
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_JOINT_H
- #define B2_JOINT_H
- //#include "b2_api.h"
- //#include "b2_math.h"
- class b2Body;
- class b2Draw;
- class b2Joint;
- struct b2SolverData;
- class b2BlockAllocator;
- enum b2JointType {
- e_unknownJoint,
- e_revoluteJoint,
- e_prismaticJoint,
- e_distanceJoint,
- e_pulleyJoint,
- e_mouseJoint,
- e_gearJoint,
- e_wheelJoint,
- e_weldJoint,
- e_frictionJoint,
- e_ropeJoint,
- e_motorJoint
- };
- struct B2_API b2Jacobian {
- b2Vec2 linear;
- float angularA;
- float angularB;
- };
- /// A joint edge is used to connect bodies and joints together
- /// in a joint graph where each body is a node and each joint
- /// is an edge. A joint edge belongs to a doubly linked list
- /// maintained in each attached body. Each joint has two joint
- /// nodes, one for each attached body.
- struct B2_API b2JointEdge {
- b2Body* other; ///< provides quick access to the other body attached.
- b2Joint* joint; ///< the joint
- b2JointEdge* prev; ///< the previous joint edge in the body's joint list
- b2JointEdge* next; ///< the next joint edge in the body's joint list
- };
- /// Joint definitions are used to construct joints.
- struct B2_API b2JointDef {
- b2JointDef() {
- type = e_unknownJoint;
- bodyA = nullptr;
- bodyB = nullptr;
- collideConnected = false;
- }
- /// The joint type is set automatically for concrete joint types.
- b2JointType type;
- /// Use this to attach application specific data to your joints.
- b2JointUserData userData;
- /// The first attached body.
- b2Body* bodyA;
- /// The second attached body.
- b2Body* bodyB;
- /// Set this flag to true if the attached bodies should collide.
- bool collideConnected;
- };
- /// Utility to compute linear stiffness values from frequency and damping ratio
- B2_API void b2LinearStiffness(float& stiffness, float& damping,
- float frequencyHertz, float dampingRatio,
- const b2Body* bodyA, const b2Body* bodyB);
- /// Utility to compute rotational stiffness values frequency and damping ratio
- B2_API void b2AngularStiffness(float& stiffness, float& damping,
- float frequencyHertz, float dampingRatio,
- const b2Body* bodyA, const b2Body* bodyB);
- /// The base joint class. Joints are used to constraint two bodies together in
- /// various fashions. Some joints also feature limits and motors.
- class B2_API b2Joint {
- public:
- /// Get the type of the concrete joint.
- b2JointType GetType() const;
- /// Get the first body attached to this joint.
- b2Body* GetBodyA();
- /// Get the second body attached to this joint.
- b2Body* GetBodyB();
- /// Get the anchor point on bodyA in world coordinates.
- virtual b2Vec2 GetAnchorA() const = 0;
- /// Get the anchor point on bodyB in world coordinates.
- virtual b2Vec2 GetAnchorB() const = 0;
- /// Get the reaction force on bodyB at the joint anchor in Newtons.
- virtual b2Vec2 GetReactionForce(float inv_dt) const = 0;
- /// Get the reaction torque on bodyB in N*m.
- virtual float GetReactionTorque(float inv_dt) const = 0;
- /// Get the next joint the world joint list.
- b2Joint* GetNext();
- const b2Joint* GetNext() const;
- /// Get the user data pointer.
- b2JointUserData& GetUserData();
- /// Short-cut function to determine if either body is enabled.
- bool IsEnabled() const;
- /// Get collide connected.
- /// Note: modifying the collide connect flag won't work correctly because
- /// the flag is only checked when fixture AABBs begin to overlap.
- bool GetCollideConnected() const;
- /// Dump this joint to the log file.
- virtual void Dump() { b2Dump("// Dump is not supported for this joint type.\n"); }
- /// Shift the origin for any points stored in world coordinates.
- virtual void ShiftOrigin(const b2Vec2& newOrigin) { B2_NOT_USED(newOrigin); }
- /// Debug draw this joint
- virtual void Draw(b2Draw* draw) const;
- protected:
- friend class b2World;
- friend class b2Body;
- friend class b2Island;
- friend class b2GearJoint;
- static b2Joint* Create(const b2JointDef* def, b2BlockAllocator* allocator);
- static void Destroy(b2Joint* joint, b2BlockAllocator* allocator);
- b2Joint(const b2JointDef* def);
- virtual ~b2Joint() {}
- virtual void InitVelocityConstraints(const b2SolverData& data) = 0;
- virtual void SolveVelocityConstraints(const b2SolverData& data) = 0;
- // This returns true if the position errors are within tolerance.
- virtual bool SolvePositionConstraints(const b2SolverData& data) = 0;
- b2JointType m_type;
- b2Joint* m_prev;
- b2Joint* m_next;
- b2JointEdge m_edgeA;
- b2JointEdge m_edgeB;
- b2Body* m_bodyA;
- b2Body* m_bodyB;
- int32 m_index;
- bool m_islandFlag;
- bool m_collideConnected;
- b2JointUserData m_userData;
- };
- inline b2JointType b2Joint::GetType() const {
- return m_type;
- }
- inline b2Body* b2Joint::GetBodyA() {
- return m_bodyA;
- }
- inline b2Body* b2Joint::GetBodyB() {
- return m_bodyB;
- }
- inline b2Joint* b2Joint::GetNext() {
- return m_next;
- }
- inline const b2Joint* b2Joint::GetNext() const {
- return m_next;
- }
- inline b2JointUserData& b2Joint::GetUserData() {
- return m_userData;
- }
- inline bool b2Joint::GetCollideConnected() const {
- return m_collideConnected;
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_DISTANCE_JOINT_H
- #define B2_DISTANCE_JOINT_H
- //#include "b2_api.h"
- //#include "b2_joint.h"
- /// Distance joint definition. This requires defining an anchor point on both
- /// bodies and the non-zero distance of the distance joint. The definition uses
- /// local anchor points so that the initial configuration can violate the
- /// constraint slightly. This helps when saving and loading a game.
- struct B2_API b2DistanceJointDef : public b2JointDef {
- b2DistanceJointDef() {
- type = e_distanceJoint;
- localAnchorA.Set(0.0f, 0.0f);
- localAnchorB.Set(0.0f, 0.0f);
- length = 1.0f;
- minLength = 0.0f;
- maxLength = FLT_MAX;
- stiffness = 0.0f;
- damping = 0.0f;
- }
- /// Initialize the bodies, anchors, and rest length using world space anchors.
- /// The minimum and maximum lengths are set to the rest length.
- void Initialize(b2Body* bodyA, b2Body* bodyB,
- const b2Vec2& anchorA, const b2Vec2& anchorB);
- /// The local anchor point relative to bodyA's origin.
- b2Vec2 localAnchorA;
- /// The local anchor point relative to bodyB's origin.
- b2Vec2 localAnchorB;
- /// The rest length of this joint. Clamped to a stable minimum value.
- float length;
- /// Minimum length. Clamped to a stable minimum value.
- float minLength;
- /// Maximum length. Must be greater than or equal to the minimum length.
- float maxLength;
- /// The linear stiffness in N/m.
- float stiffness;
- /// The linear damping in N*s/m.
- float damping;
- };
- /// A distance joint constrains two points on two bodies to remain at a fixed
- /// distance from each other. You can view this as a massless, rigid rod.
- class B2_API b2DistanceJoint : public b2Joint {
- public:
- b2Vec2 GetAnchorA() const override;
- b2Vec2 GetAnchorB() const override;
- /// Get the reaction force given the inverse time step.
- /// Unit is N.
- b2Vec2 GetReactionForce(float inv_dt) const override;
- /// Get the reaction torque given the inverse time step.
- /// Unit is N*m. This is always zero for a distance joint.
- float GetReactionTorque(float inv_dt) const override;
- /// The local anchor point relative to bodyA's origin.
- const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
- /// The local anchor point relative to bodyB's origin.
- const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; }
- /// Get the rest length
- float GetLength() const { return m_length; }
- /// Set the rest length
- /// @returns clamped rest length
- float SetLength(float length);
- /// Get the minimum length
- float GetMinLength() const { return m_minLength; }
- /// Set the minimum length
- /// @returns the clamped minimum length
- float SetMinLength(float minLength);
- /// Get the maximum length
- float GetMaxLength() const { return m_maxLength; }
- /// Set the maximum length
- /// @returns the clamped maximum length
- float SetMaxLength(float maxLength);
- /// Get the current length
- float GetCurrentLength() const;
- /// Set/get the linear stiffness in N/m
- void SetStiffness(float stiffness) { m_stiffness = stiffness; }
- float GetStiffness() const { return m_stiffness; }
- /// Set/get linear damping in N*s/m
- void SetDamping(float damping) { m_damping = damping; }
- float GetDamping() const { return m_damping; }
- /// Dump joint to dmLog
- void Dump() override;
- ///
- void Draw(b2Draw* draw) const override;
- protected:
- friend class b2Joint;
- b2DistanceJoint(const b2DistanceJointDef* data);
- void InitVelocityConstraints(const b2SolverData& data) override;
- void SolveVelocityConstraints(const b2SolverData& data) override;
- bool SolvePositionConstraints(const b2SolverData& data) override;
- float m_stiffness;
- float m_damping;
- float m_bias;
- float m_length;
- float m_minLength;
- float m_maxLength;
- // Solver shared
- b2Vec2 m_localAnchorA;
- b2Vec2 m_localAnchorB;
- float m_gamma;
- float m_impulse;
- float m_lowerImpulse;
- float m_upperImpulse;
- // Solver temp
- int32 m_indexA;
- int32 m_indexB;
- b2Vec2 m_u;
- b2Vec2 m_rA;
- b2Vec2 m_rB;
- b2Vec2 m_localCenterA;
- b2Vec2 m_localCenterB;
- float m_currentLength;
- float m_invMassA;
- float m_invMassB;
- float m_invIA;
- float m_invIB;
- float m_softMass;
- float m_mass;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_DRAW_H
- #define B2_DRAW_H
- //#include "b2_api.h"
- //#include "b2_math.h"
- /// Color for debug drawing. Each value has the range [0,1].
- struct B2_API b2Color {
- b2Color() {}
- b2Color(float rIn, float gIn, float bIn, float aIn = 1.0f) {
- r = rIn; g = gIn; b = bIn; a = aIn;
- }
- void Set(float rIn, float gIn, float bIn, float aIn = 1.0f) {
- r = rIn; g = gIn; b = bIn; a = aIn;
- }
- float r, g, b, a;
- };
- /// Implement and register this class with a b2World to provide debug drawing of physics
- /// entities in your game.
- class B2_API b2Draw {
- public:
- b2Draw();
- virtual ~b2Draw() {}
- enum {
- e_shapeBit = 0x0001, ///< draw shapes
- e_jointBit = 0x0002, ///< draw joint connections
- e_aabbBit = 0x0004, ///< draw axis aligned bounding boxes
- e_pairBit = 0x0008, ///< draw broad-phase pairs
- e_centerOfMassBit = 0x0010 ///< draw center of mass frame
- };
- /// Set the drawing flags.
- void SetFlags(uint32 flags);
- /// Get the drawing flags.
- uint32 GetFlags() const;
- /// Append flags to the current flags.
- void AppendFlags(uint32 flags);
- /// Clear flags from the current flags.
- void ClearFlags(uint32 flags);
- /// Draw a closed polygon provided in CCW order.
- virtual void DrawPolygon(const b2Vec2* vertices, int32 vertexCount, const b2Color& color) = 0;
- /// Draw a solid closed polygon provided in CCW order.
- virtual void DrawSolidPolygon(const b2Vec2* vertices, int32 vertexCount, const b2Color& color) = 0;
- /// Draw a circle.
- virtual void DrawCircle(const b2Vec2& center, float radius, const b2Color& color) = 0;
- /// Draw a solid circle.
- virtual void DrawSolidCircle(const b2Vec2& center, float radius, const b2Vec2& axis, const b2Color& color) = 0;
- /// Draw a line segment.
- virtual void DrawSegment(const b2Vec2& p1, const b2Vec2& p2, const b2Color& color) = 0;
- /// Draw a transform. Choose your own length scale.
- /// @param xf a transform.
- virtual void DrawTransform(const b2Transform& xf) = 0;
- /// Draw a point.
- virtual void DrawPoint(const b2Vec2& p, float size, const b2Color& color) = 0;
- protected:
- uint32 m_drawFlags;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_EDGE_SHAPE_H
- #define B2_EDGE_SHAPE_H
- //#include "b2_api.h"
- //#include "b2_shape.h"
- /// A line segment (edge) shape. These can be connected in chains or loops
- /// to other edge shapes. Edges created independently are two-sided and do
- /// no provide smooth movement across junctions.
- class B2_API b2EdgeShape : public b2Shape {
- public:
- b2EdgeShape();
- /// Set this as a part of a sequence. Vertex v0 precedes the edge and vertex v3
- /// follows. These extra vertices are used to provide smooth movement
- /// across junctions. This also makes the collision one-sided. The edge
- /// normal points to the right looking from v1 to v2.
- void SetOneSided(const b2Vec2& v0, const b2Vec2& v1, const b2Vec2& v2, const b2Vec2& v3);
- /// Set this as an isolated edge. Collision is two-sided.
- void SetTwoSided(const b2Vec2& v1, const b2Vec2& v2);
- /// Implement b2Shape.
- b2Shape* Clone(b2BlockAllocator* allocator) const override;
- /// @see b2Shape::GetChildCount
- int32 GetChildCount() const override;
- /// @see b2Shape::TestPoint
- bool TestPoint(const b2Transform& transform, const b2Vec2& p) const override;
- /// Implement b2Shape.
- bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
- const b2Transform& transform, int32 childIndex) const override;
- /// @see b2Shape::ComputeAABB
- void ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const override;
- /// @see b2Shape::ComputeMass
- void ComputeMass(b2MassData* massData, float density) const override;
- /// These are the edge vertices
- b2Vec2 m_vertex1, m_vertex2;
- /// Optional adjacent vertices. These are used for smooth collision.
- b2Vec2 m_vertex0, m_vertex3;
- /// Uses m_vertex0 and m_vertex3 to create smooth collision.
- bool m_oneSided;
- };
- inline b2EdgeShape::b2EdgeShape() {
- m_type = e_edge;
- m_radius = b2_polygonRadius;
- m_vertex0.x = 0.0f;
- m_vertex0.y = 0.0f;
- m_vertex3.x = 0.0f;
- m_vertex3.y = 0.0f;
- m_oneSided = false;
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_FRICTION_JOINT_H
- #define B2_FRICTION_JOINT_H
- //#include "b2_api.h"
- //#include "b2_joint.h"
- /// Friction joint definition.
- struct B2_API b2FrictionJointDef : public b2JointDef {
- b2FrictionJointDef() {
- type = e_frictionJoint;
- localAnchorA.SetZero();
- localAnchorB.SetZero();
- maxForce = 0.0f;
- maxTorque = 0.0f;
- }
- /// Initialize the bodies, anchors, axis, and reference angle using the world
- /// anchor and world axis.
- void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor);
- /// The local anchor point relative to bodyA's origin.
- b2Vec2 localAnchorA;
- /// The local anchor point relative to bodyB's origin.
- b2Vec2 localAnchorB;
- /// The maximum friction force in N.
- float maxForce;
- /// The maximum friction torque in N-m.
- float maxTorque;
- };
- /// Friction joint. This is used for top-down friction.
- /// It provides 2D translational friction and angular friction.
- class B2_API b2FrictionJoint : public b2Joint {
- public:
- b2Vec2 GetAnchorA() const override;
- b2Vec2 GetAnchorB() const override;
- b2Vec2 GetReactionForce(float inv_dt) const override;
- float GetReactionTorque(float inv_dt) const override;
- /// The local anchor point relative to bodyA's origin.
- const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
- /// The local anchor point relative to bodyB's origin.
- const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; }
- /// Set the maximum friction force in N.
- void SetMaxForce(float force);
- /// Get the maximum friction force in N.
- float GetMaxForce() const;
- /// Set the maximum friction torque in N*m.
- void SetMaxTorque(float torque);
- /// Get the maximum friction torque in N*m.
- float GetMaxTorque() const;
- /// Dump joint to dmLog
- void Dump() override;
- protected:
- friend class b2Joint;
- b2FrictionJoint(const b2FrictionJointDef* def);
- void InitVelocityConstraints(const b2SolverData& data) override;
- void SolveVelocityConstraints(const b2SolverData& data) override;
- bool SolvePositionConstraints(const b2SolverData& data) override;
- b2Vec2 m_localAnchorA;
- b2Vec2 m_localAnchorB;
- // Solver shared
- b2Vec2 m_linearImpulse;
- float m_angularImpulse;
- float m_maxForce;
- float m_maxTorque;
- // Solver temp
- int32 m_indexA;
- int32 m_indexB;
- b2Vec2 m_rA;
- b2Vec2 m_rB;
- b2Vec2 m_localCenterA;
- b2Vec2 m_localCenterB;
- float m_invMassA;
- float m_invMassB;
- float m_invIA;
- float m_invIB;
- b2Mat22 m_linearMass;
- float m_angularMass;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_GEAR_JOINT_H
- #define B2_GEAR_JOINT_H
- //#include "b2_joint.h"
- /// Gear joint definition. This definition requires two existing
- /// revolute or prismatic joints (any combination will work).
- /// @warning bodyB on the input joints must both be dynamic
- struct B2_API b2GearJointDef : public b2JointDef {
- b2GearJointDef() {
- type = e_gearJoint;
- joint1 = nullptr;
- joint2 = nullptr;
- ratio = 1.0f;
- }
- /// The first revolute/prismatic joint attached to the gear joint.
- b2Joint* joint1;
- /// The second revolute/prismatic joint attached to the gear joint.
- b2Joint* joint2;
- /// The gear ratio.
- /// @see b2GearJoint for explanation.
- float ratio;
- };
- /// A gear joint is used to connect two joints together. Either joint
- /// can be a revolute or prismatic joint. You specify a gear ratio
- /// to bind the motions together:
- /// coordinate1 + ratio * coordinate2 = constant
- /// The ratio can be negative or positive. If one joint is a revolute joint
- /// and the other joint is a prismatic joint, then the ratio will have units
- /// of length or units of 1/length.
- /// @warning You have to manually destroy the gear joint if joint1 or joint2
- /// is destroyed.
- class B2_API b2GearJoint : public b2Joint {
- public:
- b2Vec2 GetAnchorA() const override;
- b2Vec2 GetAnchorB() const override;
- b2Vec2 GetReactionForce(float inv_dt) const override;
- float GetReactionTorque(float inv_dt) const override;
- /// Get the first joint.
- b2Joint* GetJoint1() { return m_joint1; }
- /// Get the second joint.
- b2Joint* GetJoint2() { return m_joint2; }
- /// Set/Get the gear ratio.
- void SetRatio(float ratio);
- float GetRatio() const;
- /// Dump joint to dmLog
- void Dump() override;
- protected:
- friend class b2Joint;
- b2GearJoint(const b2GearJointDef* data);
- void InitVelocityConstraints(const b2SolverData& data) override;
- void SolveVelocityConstraints(const b2SolverData& data) override;
- bool SolvePositionConstraints(const b2SolverData& data) override;
- b2Joint* m_joint1;
- b2Joint* m_joint2;
- b2JointType m_typeA;
- b2JointType m_typeB;
- // Body A is connected to body C
- // Body B is connected to body D
- b2Body* m_bodyC;
- b2Body* m_bodyD;
- // Solver shared
- b2Vec2 m_localAnchorA;
- b2Vec2 m_localAnchorB;
- b2Vec2 m_localAnchorC;
- b2Vec2 m_localAnchorD;
- b2Vec2 m_localAxisC;
- b2Vec2 m_localAxisD;
- float m_referenceAngleA;
- float m_referenceAngleB;
- float m_constant;
- float m_ratio;
- float m_impulse;
- // Solver temp
- int32 m_indexA, m_indexB, m_indexC, m_indexD;
- b2Vec2 m_lcA, m_lcB, m_lcC, m_lcD;
- float m_mA, m_mB, m_mC, m_mD;
- float m_iA, m_iB, m_iC, m_iD;
- b2Vec2 m_JvAC, m_JvBD;
- float m_JwA, m_JwB, m_JwC, m_JwD;
- float m_mass;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_MOTOR_JOINT_H
- #define B2_MOTOR_JOINT_H
- //#include "b2_api.h"
- //#include "b2_joint.h"
- /// Motor joint definition.
- struct B2_API b2MotorJointDef : public b2JointDef {
- b2MotorJointDef() {
- type = e_motorJoint;
- linearOffset.SetZero();
- angularOffset = 0.0f;
- maxForce = 1.0f;
- maxTorque = 1.0f;
- correctionFactor = 0.3f;
- }
- /// Initialize the bodies and offsets using the current transforms.
- void Initialize(b2Body* bodyA, b2Body* bodyB);
- /// Position of bodyB minus the position of bodyA, in bodyA's frame, in meters.
- b2Vec2 linearOffset;
- /// The bodyB angle minus bodyA angle in radians.
- float angularOffset;
- /// The maximum motor force in N.
- float maxForce;
- /// The maximum motor torque in N-m.
- float maxTorque;
- /// Position correction factor in the range [0,1].
- float correctionFactor;
- };
- /// A motor joint is used to control the relative motion
- /// between two bodies. A typical usage is to control the movement
- /// of a dynamic body with respect to the ground.
- class B2_API b2MotorJoint : public b2Joint {
- public:
- b2Vec2 GetAnchorA() const override;
- b2Vec2 GetAnchorB() const override;
- b2Vec2 GetReactionForce(float inv_dt) const override;
- float GetReactionTorque(float inv_dt) const override;
- /// Set/get the target linear offset, in frame A, in meters.
- void SetLinearOffset(const b2Vec2& linearOffset);
- const b2Vec2& GetLinearOffset() const;
- /// Set/get the target angular offset, in radians.
- void SetAngularOffset(float angularOffset);
- float GetAngularOffset() const;
- /// Set the maximum friction force in N.
- void SetMaxForce(float force);
- /// Get the maximum friction force in N.
- float GetMaxForce() const;
- /// Set the maximum friction torque in N*m.
- void SetMaxTorque(float torque);
- /// Get the maximum friction torque in N*m.
- float GetMaxTorque() const;
- /// Set the position correction factor in the range [0,1].
- void SetCorrectionFactor(float factor);
- /// Get the position correction factor in the range [0,1].
- float GetCorrectionFactor() const;
- /// Dump to b2Log
- void Dump() override;
- protected:
- friend class b2Joint;
- b2MotorJoint(const b2MotorJointDef* def);
- void InitVelocityConstraints(const b2SolverData& data) override;
- void SolveVelocityConstraints(const b2SolverData& data) override;
- bool SolvePositionConstraints(const b2SolverData& data) override;
- // Solver shared
- b2Vec2 m_linearOffset;
- float m_angularOffset;
- b2Vec2 m_linearImpulse;
- float m_angularImpulse;
- float m_maxForce;
- float m_maxTorque;
- float m_correctionFactor;
- // Solver temp
- int32 m_indexA;
- int32 m_indexB;
- b2Vec2 m_rA;
- b2Vec2 m_rB;
- b2Vec2 m_localCenterA;
- b2Vec2 m_localCenterB;
- b2Vec2 m_linearError;
- float m_angularError;
- float m_invMassA;
- float m_invMassB;
- float m_invIA;
- float m_invIB;
- b2Mat22 m_linearMass;
- float m_angularMass;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_MOUSE_JOINT_H
- #define B2_MOUSE_JOINT_H
- //#include "b2_api.h"
- //#include "b2_joint.h"
- /// Mouse joint definition. This requires a world target point,
- /// tuning parameters, and the time step.
- struct B2_API b2MouseJointDef : public b2JointDef {
- b2MouseJointDef() {
- type = e_mouseJoint;
- target.Set(0.0f, 0.0f);
- maxForce = 0.0f;
- stiffness = 0.0f;
- damping = 0.0f;
- }
- /// The initial world target point. This is assumed
- /// to coincide with the body anchor initially.
- b2Vec2 target;
- /// The maximum constraint force that can be exerted
- /// to move the candidate body. Usually you will express
- /// as some multiple of the weight (multiplier * mass * gravity).
- float maxForce;
- /// The linear stiffness in N/m
- float stiffness;
- /// The linear damping in N*s/m
- float damping;
- };
- /// A mouse joint is used to make a point on a body track a
- /// specified world point. This a soft constraint with a maximum
- /// force. This allows the constraint to stretch and without
- /// applying huge forces.
- /// NOTE: this joint is not documented in the manual because it was
- /// developed to be used in the testbed. If you want to learn how to
- /// use the mouse joint, look at the testbed.
- class B2_API b2MouseJoint : public b2Joint {
- public:
- /// Implements b2Joint.
- b2Vec2 GetAnchorA() const override;
- /// Implements b2Joint.
- b2Vec2 GetAnchorB() const override;
- /// Implements b2Joint.
- b2Vec2 GetReactionForce(float inv_dt) const override;
- /// Implements b2Joint.
- float GetReactionTorque(float inv_dt) const override;
- /// Use this to update the target point.
- void SetTarget(const b2Vec2& target);
- const b2Vec2& GetTarget() const;
- /// Set/get the maximum force in Newtons.
- void SetMaxForce(float force);
- float GetMaxForce() const;
- /// Set/get the linear stiffness in N/m
- void SetStiffness(float stiffness) { m_stiffness = stiffness; }
- float GetStiffness() const { return m_stiffness; }
- /// Set/get linear damping in N*s/m
- void SetDamping(float damping) { m_damping = damping; }
- float GetDamping() const { return m_damping; }
- /// The mouse joint does not support dumping.
- void Dump() override { b2Log("Mouse joint dumping is not supported.\n"); }
- /// Implement b2Joint::ShiftOrigin
- void ShiftOrigin(const b2Vec2& newOrigin) override;
- protected:
- friend class b2Joint;
- b2MouseJoint(const b2MouseJointDef* def);
- void InitVelocityConstraints(const b2SolverData& data) override;
- void SolveVelocityConstraints(const b2SolverData& data) override;
- bool SolvePositionConstraints(const b2SolverData& data) override;
- b2Vec2 m_localAnchorB;
- b2Vec2 m_targetA;
- float m_stiffness;
- float m_damping;
- float m_beta;
- // Solver shared
- b2Vec2 m_impulse;
- float m_maxForce;
- float m_gamma;
- // Solver temp
- int32 m_indexA;
- int32 m_indexB;
- b2Vec2 m_rB;
- b2Vec2 m_localCenterB;
- float m_invMassB;
- float m_invIB;
- b2Mat22 m_mass;
- b2Vec2 m_C;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_POLYGON_SHAPE_H
- #define B2_POLYGON_SHAPE_H
- //#include "b2_api.h"
- //#include "b2_shape.h"
- /// A solid convex polygon. It is assumed that the interior of the polygon is to
- /// the left of each edge.
- /// Polygons have a maximum number of vertices equal to b2_maxPolygonVertices.
- /// In most cases you should not need many vertices for a convex polygon.
- class B2_API b2PolygonShape : public b2Shape {
- public:
- b2PolygonShape();
- /// Implement b2Shape.
- b2Shape* Clone(b2BlockAllocator* allocator) const override;
- /// @see b2Shape::GetChildCount
- int32 GetChildCount() const override;
- /// Create a convex hull from the given array of local points.
- /// The count must be in the range [3, b2_maxPolygonVertices].
- /// @warning the points may be re-ordered, even if they form a convex polygon
- /// @warning collinear points are handled but not removed. Collinear points
- /// may lead to poor stacking behavior.
- void Set(const b2Vec2* points, int32 count);
- /// Build vertices to represent an axis-aligned box centered on the local origin.
- /// @param hx the half-width.
- /// @param hy the half-height.
- void SetAsBox(float hx, float hy);
- /// Build vertices to represent an oriented box.
- /// @param hx the half-width.
- /// @param hy the half-height.
- /// @param center the center of the box in local coordinates.
- /// @param angle the rotation of the box in local coordinates.
- void SetAsBox(float hx, float hy, const b2Vec2& center, float angle);
- /// @see b2Shape::TestPoint
- bool TestPoint(const b2Transform& transform, const b2Vec2& p) const override;
- /// Implement b2Shape.
- /// @note because the polygon is solid, rays that start inside do not hit because the normal is
- /// not defined.
- bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
- const b2Transform& transform, int32 childIndex) const override;
- /// @see b2Shape::ComputeAABB
- void ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const override;
- /// @see b2Shape::ComputeMass
- void ComputeMass(b2MassData* massData, float density) const override;
- /// Validate convexity. This is a very time consuming operation.
- /// @returns true if valid
- bool Validate() const;
- b2Vec2 m_centroid;
- b2Vec2 m_vertices[b2_maxPolygonVertices];
- b2Vec2 m_normals[b2_maxPolygonVertices];
- int32 m_count;
- };
- inline b2PolygonShape::b2PolygonShape() {
- m_type = e_polygon;
- m_radius = b2_polygonRadius;
- m_count = 0;
- m_centroid.SetZero();
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_PRISMATIC_JOINT_H
- #define B2_PRISMATIC_JOINT_H
- //#include "b2_api.h"
- //#include "b2_joint.h"
- /// Prismatic joint definition. This requires defining a line of
- /// motion using an axis and an anchor point. The definition uses local
- /// anchor points and a local axis so that the initial configuration
- /// can violate the constraint slightly. The joint translation is zero
- /// when the local anchor points coincide in world space. Using local
- /// anchors and a local axis helps when saving and loading a game.
- struct B2_API b2PrismaticJointDef : public b2JointDef {
- b2PrismaticJointDef() {
- type = e_prismaticJoint;
- localAnchorA.SetZero();
- localAnchorB.SetZero();
- localAxisA.Set(1.0f, 0.0f);
- referenceAngle = 0.0f;
- enableLimit = false;
- lowerTranslation = 0.0f;
- upperTranslation = 0.0f;
- enableMotor = false;
- maxMotorForce = 0.0f;
- motorSpeed = 0.0f;
- }
- /// Initialize the bodies, anchors, axis, and reference angle using the world
- /// anchor and unit world axis.
- void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor, const b2Vec2& axis);
- /// The local anchor point relative to bodyA's origin.
- b2Vec2 localAnchorA;
- /// The local anchor point relative to bodyB's origin.
- b2Vec2 localAnchorB;
- /// The local translation unit axis in bodyA.
- b2Vec2 localAxisA;
- /// The constrained angle between the bodies: bodyB_angle - bodyA_angle.
- float referenceAngle;
- /// Enable/disable the joint limit.
- bool enableLimit;
- /// The lower translation limit, usually in meters.
- float lowerTranslation;
- /// The upper translation limit, usually in meters.
- float upperTranslation;
- /// Enable/disable the joint motor.
- bool enableMotor;
- /// The maximum motor torque, usually in N-m.
- float maxMotorForce;
- /// The desired motor speed in radians per second.
- float motorSpeed;
- };
- /// A prismatic joint. This joint provides one degree of freedom: translation
- /// along an axis fixed in bodyA. Relative rotation is prevented. You can
- /// use a joint limit to restrict the range of motion and a joint motor to
- /// drive the motion or to model joint friction.
- class B2_API b2PrismaticJoint : public b2Joint {
- public:
- b2Vec2 GetAnchorA() const override;
- b2Vec2 GetAnchorB() const override;
- b2Vec2 GetReactionForce(float inv_dt) const override;
- float GetReactionTorque(float inv_dt) const override;
- /// The local anchor point relative to bodyA's origin.
- const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
- /// The local anchor point relative to bodyB's origin.
- const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; }
- /// The local joint axis relative to bodyA.
- const b2Vec2& GetLocalAxisA() const { return m_localXAxisA; }
- /// Get the reference angle.
- float GetReferenceAngle() const { return m_referenceAngle; }
- /// Get the current joint translation, usually in meters.
- float GetJointTranslation() const;
- /// Get the current joint translation speed, usually in meters per second.
- float GetJointSpeed() const;
- /// Is the joint limit enabled?
- bool IsLimitEnabled() const;
- /// Enable/disable the joint limit.
- void EnableLimit(bool flag);
- /// Get the lower joint limit, usually in meters.
- float GetLowerLimit() const;
- /// Get the upper joint limit, usually in meters.
- float GetUpperLimit() const;
- /// Set the joint limits, usually in meters.
- void SetLimits(float lower, float upper);
- /// Is the joint motor enabled?
- bool IsMotorEnabled() const;
- /// Enable/disable the joint motor.
- void EnableMotor(bool flag);
- /// Set the motor speed, usually in meters per second.
- void SetMotorSpeed(float speed);
- /// Get the motor speed, usually in meters per second.
- float GetMotorSpeed() const;
- /// Set the maximum motor force, usually in N.
- void SetMaxMotorForce(float force);
- float GetMaxMotorForce() const { return m_maxMotorForce; }
- /// Get the current motor force given the inverse time step, usually in N.
- float GetMotorForce(float inv_dt) const;
- /// Dump to b2Log
- void Dump() override;
- ///
- void Draw(b2Draw* draw) const override;
- protected:
- friend class b2Joint;
- friend class b2GearJoint;
- b2PrismaticJoint(const b2PrismaticJointDef* def);
- void InitVelocityConstraints(const b2SolverData& data) override;
- void SolveVelocityConstraints(const b2SolverData& data) override;
- bool SolvePositionConstraints(const b2SolverData& data) override;
- b2Vec2 m_localAnchorA;
- b2Vec2 m_localAnchorB;
- b2Vec2 m_localXAxisA;
- b2Vec2 m_localYAxisA;
- float m_referenceAngle;
- b2Vec2 m_impulse;
- float m_motorImpulse;
- float m_lowerImpulse;
- float m_upperImpulse;
- float m_lowerTranslation;
- float m_upperTranslation;
- float m_maxMotorForce;
- float m_motorSpeed;
- bool m_enableLimit;
- bool m_enableMotor;
- // Solver temp
- int32 m_indexA;
- int32 m_indexB;
- b2Vec2 m_localCenterA;
- b2Vec2 m_localCenterB;
- float m_invMassA;
- float m_invMassB;
- float m_invIA;
- float m_invIB;
- b2Vec2 m_axis, m_perp;
- float m_s1, m_s2;
- float m_a1, m_a2;
- b2Mat22 m_K;
- float m_translation;
- float m_axialMass;
- };
- inline float b2PrismaticJoint::GetMotorSpeed() const {
- return m_motorSpeed;
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_PULLEY_JOINT_H
- #define B2_PULLEY_JOINT_H
- //#include "b2_api.h"
- //#include "b2_joint.h"
- const float b2_minPulleyLength = 2.0f;
- /// Pulley joint definition. This requires two ground anchors,
- /// two dynamic body anchor points, and a pulley ratio.
- struct B2_API b2PulleyJointDef : public b2JointDef {
- b2PulleyJointDef() {
- type = e_pulleyJoint;
- groundAnchorA.Set(-1.0f, 1.0f);
- groundAnchorB.Set(1.0f, 1.0f);
- localAnchorA.Set(-1.0f, 0.0f);
- localAnchorB.Set(1.0f, 0.0f);
- lengthA = 0.0f;
- lengthB = 0.0f;
- ratio = 1.0f;
- collideConnected = true;
- }
- /// Initialize the bodies, anchors, lengths, max lengths, and ratio using the world anchors.
- void Initialize(b2Body* bodyA, b2Body* bodyB,
- const b2Vec2& groundAnchorA, const b2Vec2& groundAnchorB,
- const b2Vec2& anchorA, const b2Vec2& anchorB,
- float ratio);
- /// The first ground anchor in world coordinates. This point never moves.
- b2Vec2 groundAnchorA;
- /// The second ground anchor in world coordinates. This point never moves.
- b2Vec2 groundAnchorB;
- /// The local anchor point relative to bodyA's origin.
- b2Vec2 localAnchorA;
- /// The local anchor point relative to bodyB's origin.
- b2Vec2 localAnchorB;
- /// The a reference length for the segment attached to bodyA.
- float lengthA;
- /// The a reference length for the segment attached to bodyB.
- float lengthB;
- /// The pulley ratio, used to simulate a block-and-tackle.
- float ratio;
- };
- /// The pulley joint is connected to two bodies and two fixed ground points.
- /// The pulley supports a ratio such that:
- /// length1 + ratio * length2 <= constant
- /// Yes, the force transmitted is scaled by the ratio.
- /// Warning: the pulley joint can get a bit squirrelly by itself. They often
- /// work better when combined with prismatic joints. You should also cover the
- /// the anchor points with static shapes to prevent one side from going to
- /// zero length.
- class B2_API b2PulleyJoint : public b2Joint {
- public:
- b2Vec2 GetAnchorA() const override;
- b2Vec2 GetAnchorB() const override;
- b2Vec2 GetReactionForce(float inv_dt) const override;
- float GetReactionTorque(float inv_dt) const override;
- /// Get the first ground anchor.
- b2Vec2 GetGroundAnchorA() const;
- /// Get the second ground anchor.
- b2Vec2 GetGroundAnchorB() const;
- /// Get the current length of the segment attached to bodyA.
- float GetLengthA() const;
- /// Get the current length of the segment attached to bodyB.
- float GetLengthB() const;
- /// Get the pulley ratio.
- float GetRatio() const;
- /// Get the current length of the segment attached to bodyA.
- float GetCurrentLengthA() const;
- /// Get the current length of the segment attached to bodyB.
- float GetCurrentLengthB() const;
- /// Dump joint to dmLog
- void Dump() override;
- /// Implement b2Joint::ShiftOrigin
- void ShiftOrigin(const b2Vec2& newOrigin) override;
- protected:
- friend class b2Joint;
- b2PulleyJoint(const b2PulleyJointDef* data);
- void InitVelocityConstraints(const b2SolverData& data) override;
- void SolveVelocityConstraints(const b2SolverData& data) override;
- bool SolvePositionConstraints(const b2SolverData& data) override;
- b2Vec2 m_groundAnchorA;
- b2Vec2 m_groundAnchorB;
- float m_lengthA;
- float m_lengthB;
- // Solver shared
- b2Vec2 m_localAnchorA;
- b2Vec2 m_localAnchorB;
- float m_constant;
- float m_ratio;
- float m_impulse;
- // Solver temp
- int32 m_indexA;
- int32 m_indexB;
- b2Vec2 m_uA;
- b2Vec2 m_uB;
- b2Vec2 m_rA;
- b2Vec2 m_rB;
- b2Vec2 m_localCenterA;
- b2Vec2 m_localCenterB;
- float m_invMassA;
- float m_invMassB;
- float m_invIA;
- float m_invIB;
- float m_mass;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_REVOLUTE_JOINT_H
- #define B2_REVOLUTE_JOINT_H
- //#include "b2_api.h"
- //#include "b2_joint.h"
- /// Revolute joint definition. This requires defining an anchor point where the
- /// bodies are joined. The definition uses local anchor points so that the
- /// initial configuration can violate the constraint slightly. You also need to
- /// specify the initial relative angle for joint limits. This helps when saving
- /// and loading a game.
- /// The local anchor points are measured from the body's origin
- /// rather than the center of mass because:
- /// 1. you might not know where the center of mass will be.
- /// 2. if you add/remove shapes from a body and recompute the mass,
- /// the joints will be broken.
- struct B2_API b2RevoluteJointDef : public b2JointDef {
- b2RevoluteJointDef() {
- type = e_revoluteJoint;
- localAnchorA.Set(0.0f, 0.0f);
- localAnchorB.Set(0.0f, 0.0f);
- referenceAngle = 0.0f;
- lowerAngle = 0.0f;
- upperAngle = 0.0f;
- maxMotorTorque = 0.0f;
- motorSpeed = 0.0f;
- enableLimit = false;
- enableMotor = false;
- }
- /// Initialize the bodies, anchors, and reference angle using a world
- /// anchor point.
- void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor);
- /// The local anchor point relative to bodyA's origin.
- b2Vec2 localAnchorA;
- /// The local anchor point relative to bodyB's origin.
- b2Vec2 localAnchorB;
- /// The bodyB angle minus bodyA angle in the reference state (radians).
- float referenceAngle;
- /// A flag to enable joint limits.
- bool enableLimit;
- /// The lower angle for the joint limit (radians).
- float lowerAngle;
- /// The upper angle for the joint limit (radians).
- float upperAngle;
- /// A flag to enable the joint motor.
- bool enableMotor;
- /// The desired motor speed. Usually in radians per second.
- float motorSpeed;
- /// The maximum motor torque used to achieve the desired motor speed.
- /// Usually in N-m.
- float maxMotorTorque;
- };
- /// A revolute joint constrains two bodies to share a common point while they
- /// are free to rotate about the point. The relative rotation about the shared
- /// point is the joint angle. You can limit the relative rotation with
- /// a joint limit that specifies a lower and upper angle. You can use a motor
- /// to drive the relative rotation about the shared point. A maximum motor torque
- /// is provided so that infinite forces are not generated.
- class B2_API b2RevoluteJoint : public b2Joint {
- public:
- b2Vec2 GetAnchorA() const override;
- b2Vec2 GetAnchorB() const override;
- /// The local anchor point relative to bodyA's origin.
- const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
- /// The local anchor point relative to bodyB's origin.
- const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; }
- /// Get the reference angle.
- float GetReferenceAngle() const { return m_referenceAngle; }
- /// Get the current joint angle in radians.
- float GetJointAngle() const;
- /// Get the current joint angle speed in radians per second.
- float GetJointSpeed() const;
- /// Is the joint limit enabled?
- bool IsLimitEnabled() const;
- /// Enable/disable the joint limit.
- void EnableLimit(bool flag);
- /// Get the lower joint limit in radians.
- float GetLowerLimit() const;
- /// Get the upper joint limit in radians.
- float GetUpperLimit() const;
- /// Set the joint limits in radians.
- void SetLimits(float lower, float upper);
- /// Is the joint motor enabled?
- bool IsMotorEnabled() const;
- /// Enable/disable the joint motor.
- void EnableMotor(bool flag);
- /// Set the motor speed in radians per second.
- void SetMotorSpeed(float speed);
- /// Get the motor speed in radians per second.
- float GetMotorSpeed() const;
- /// Set the maximum motor torque, usually in N-m.
- void SetMaxMotorTorque(float torque);
- float GetMaxMotorTorque() const { return m_maxMotorTorque; }
- /// Get the reaction force given the inverse time step.
- /// Unit is N.
- b2Vec2 GetReactionForce(float inv_dt) const override;
- /// Get the reaction torque due to the joint limit given the inverse time step.
- /// Unit is N*m.
- float GetReactionTorque(float inv_dt) const override;
- /// Get the current motor torque given the inverse time step.
- /// Unit is N*m.
- float GetMotorTorque(float inv_dt) const;
- /// Dump to b2Log.
- void Dump() override;
- ///
- void Draw(b2Draw* draw) const override;
- protected:
- friend class b2Joint;
- friend class b2GearJoint;
- b2RevoluteJoint(const b2RevoluteJointDef* def);
- void InitVelocityConstraints(const b2SolverData& data) override;
- void SolveVelocityConstraints(const b2SolverData& data) override;
- bool SolvePositionConstraints(const b2SolverData& data) override;
- // Solver shared
- b2Vec2 m_localAnchorA;
- b2Vec2 m_localAnchorB;
- b2Vec2 m_impulse;
- float m_motorImpulse;
- float m_lowerImpulse;
- float m_upperImpulse;
- bool m_enableMotor;
- float m_maxMotorTorque;
- float m_motorSpeed;
- bool m_enableLimit;
- float m_referenceAngle;
- float m_lowerAngle;
- float m_upperAngle;
- // Solver temp
- int32 m_indexA;
- int32 m_indexB;
- b2Vec2 m_rA;
- b2Vec2 m_rB;
- b2Vec2 m_localCenterA;
- b2Vec2 m_localCenterB;
- float m_invMassA;
- float m_invMassB;
- float m_invIA;
- float m_invIB;
- b2Mat22 m_K;
- float m_angle;
- float m_axialMass;
- };
- inline float b2RevoluteJoint::GetMotorSpeed() const {
- return m_motorSpeed;
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_ROPE_H
- #define B2_ROPE_H
- //#include "b2_api.h"
- //#include "b2_math.h"
- class b2Draw;
- struct b2RopeStretch;
- struct b2RopeBend;
- enum b2StretchingModel {
- b2_pbdStretchingModel,
- b2_xpbdStretchingModel
- };
- enum b2BendingModel {
- b2_springAngleBendingModel = 0,
- b2_pbdAngleBendingModel,
- b2_xpbdAngleBendingModel,
- b2_pbdDistanceBendingModel,
- b2_pbdHeightBendingModel,
- b2_pbdTriangleBendingModel
- };
- ///
- struct B2_API b2RopeTuning {
- b2RopeTuning() {
- stretchingModel = b2_pbdStretchingModel;
- bendingModel = b2_pbdAngleBendingModel;
- damping = 0.0f;
- stretchStiffness = 1.0f;
- bendStiffness = 0.5f;
- bendHertz = 1.0f;
- bendDamping = 0.0f;
- isometric = false;
- fixedEffectiveMass = false;
- warmStart = false;
- }
- b2StretchingModel stretchingModel;
- b2BendingModel bendingModel;
- float damping;
- float stretchStiffness;
- float stretchHertz;
- float stretchDamping;
- float bendStiffness;
- float bendHertz;
- float bendDamping;
- bool isometric;
- bool fixedEffectiveMass;
- bool warmStart;
- };
- ///
- struct B2_API b2RopeDef {
- b2RopeDef() {
- position.SetZero();
- vertices = nullptr;
- count = 0;
- masses = nullptr;
- gravity.SetZero();
- }
- b2Vec2 position;
- b2Vec2* vertices;
- int32 count;
- float* masses;
- b2Vec2 gravity;
- b2RopeTuning tuning;
- };
- ///
- class B2_API b2Rope {
- public:
- b2Rope();
- ~b2Rope();
- ///
- void Create(const b2RopeDef& def);
- ///
- void SetTuning(const b2RopeTuning& tuning);
- ///
- void Step(float timeStep, int32 iterations, const b2Vec2& position);
- ///
- void Reset(const b2Vec2& position);
- ///
- void Draw(b2Draw* draw) const;
- private:
- void SolveStretch_PBD();
- void SolveStretch_XPBD(float dt);
- void SolveBend_PBD_Angle();
- void SolveBend_XPBD_Angle(float dt);
- void SolveBend_PBD_Distance();
- void SolveBend_PBD_Height();
- void SolveBend_PBD_Triangle();
- void ApplyBendForces(float dt);
- b2Vec2 m_position;
- int32 m_count;
- int32 m_stretchCount;
- int32 m_bendCount;
- b2RopeStretch* m_stretchConstraints;
- b2RopeBend* m_bendConstraints;
- b2Vec2* m_bindPositions;
- b2Vec2* m_ps;
- b2Vec2* m_p0s;
- b2Vec2* m_vs;
- float* m_invMasses;
- b2Vec2 m_gravity;
- b2RopeTuning m_tuning;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_TIMER_H
- #define B2_TIMER_H
- //#include "b2_api.h"
- //#include "b2_settings.h"
- /// Timer for profiling. This has platform specific code and may
- /// not work on every platform.
- class B2_API b2Timer {
- public:
- /// Constructor
- b2Timer();
- /// Reset the timer.
- void Reset();
- /// Get the time since construction or the last reset.
- float GetMilliseconds() const;
- private:
- #if defined(_WIN32)
- double m_start;
- static double s_invFrequency;
- #elif defined(__linux__) || defined (__APPLE__)
- unsigned long long m_start_sec;
- unsigned long long m_start_usec;
- #endif
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_TIME_OF_IMPACT_H
- #define B2_TIME_OF_IMPACT_H
- //#include "b2_api.h"
- //#include "b2_math.h"
- //#include "b2_distance.h"
- /// Input parameters for b2TimeOfImpact
- struct B2_API b2TOIInput {
- b2DistanceProxy proxyA;
- b2DistanceProxy proxyB;
- b2Sweep sweepA;
- b2Sweep sweepB;
- float tMax; // defines sweep interval [0, tMax]
- };
- /// Output parameters for b2TimeOfImpact.
- struct B2_API b2TOIOutput {
- enum State {
- e_unknown,
- e_failed,
- e_overlapped,
- e_touching,
- e_separated
- };
- State state;
- float t;
- };
- /// Compute the upper bound on time before two shapes penetrate. Time is represented as
- /// a fraction between [0,tMax]. This uses a swept separating axis and may miss some intermediate,
- /// non-tunneling collisions. If you change the time interval, you should call this function
- /// again.
- /// Note: use b2Distance to compute the contact point and normal at the time of impact.
- B2_API void b2TimeOfImpact(b2TOIOutput* output, const b2TOIInput* input);
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_TIME_STEP_H
- #define B2_TIME_STEP_H
- //#include "b2_api.h"
- //#include "b2_math.h"
- /// Profiling data. Times are in milliseconds.
- struct B2_API b2Profile {
- float step;
- float collide;
- float solve;
- float solveInit;
- float solveVelocity;
- float solvePosition;
- float broadphase;
- float solveTOI;
- };
- /// This is an internal structure.
- struct B2_API b2TimeStep {
- float dt; // time step
- float inv_dt; // inverse time step (0 if dt == 0).
- float dtRatio; // dt * inv_dt0
- int32 velocityIterations;
- int32 positionIterations;
- bool warmStarting;
- };
- /// This is an internal structure.
- struct B2_API b2Position {
- b2Vec2 c;
- float a;
- };
- /// This is an internal structure.
- struct B2_API b2Velocity {
- b2Vec2 v;
- float w;
- };
- /// Solver Data
- struct B2_API b2SolverData {
- b2TimeStep step;
- b2Position* positions;
- b2Velocity* velocities;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_WELD_JOINT_H
- #define B2_WELD_JOINT_H
- //#include "b2_api.h"
- //#include "b2_joint.h"
- /// Weld joint definition. You need to specify local anchor points
- /// where they are attached and the relative body angle. The position
- /// of the anchor points is important for computing the reaction torque.
- struct B2_API b2WeldJointDef : public b2JointDef {
- b2WeldJointDef() {
- type = e_weldJoint;
- localAnchorA.Set(0.0f, 0.0f);
- localAnchorB.Set(0.0f, 0.0f);
- referenceAngle = 0.0f;
- stiffness = 0.0f;
- damping = 0.0f;
- }
- /// Initialize the bodies, anchors, reference angle, stiffness, and damping.
- /// @param bodyA the first body connected by this joint
- /// @param bodyB the second body connected by this joint
- /// @param anchor the point of connection in world coordinates
- void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor);
- /// The local anchor point relative to bodyA's origin.
- b2Vec2 localAnchorA;
- /// The local anchor point relative to bodyB's origin.
- b2Vec2 localAnchorB;
- /// The bodyB angle minus bodyA angle in the reference state (radians).
- float referenceAngle;
- /// The rotational stiffness in N*m
- /// Disable softness with a value of 0
- float stiffness;
- /// The rotational damping in N*m*s
- float damping;
- };
- /// A weld joint essentially glues two bodies together. A weld joint may
- /// distort somewhat because the island constraint solver is approximate.
- class B2_API b2WeldJoint : public b2Joint {
- public:
- b2Vec2 GetAnchorA() const override;
- b2Vec2 GetAnchorB() const override;
- b2Vec2 GetReactionForce(float inv_dt) const override;
- float GetReactionTorque(float inv_dt) const override;
- /// The local anchor point relative to bodyA's origin.
- const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
- /// The local anchor point relative to bodyB's origin.
- const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; }
- /// Get the reference angle.
- float GetReferenceAngle() const { return m_referenceAngle; }
- /// Set/get stiffness in N*m
- void SetStiffness(float hz) { m_stiffness = hz; }
- float GetStiffness() const { return m_stiffness; }
- /// Set/get damping in N*m*s
- void SetDamping(float damping) { m_damping = damping; }
- float GetDamping() const { return m_damping; }
- /// Dump to b2Log
- void Dump() override;
- protected:
- friend class b2Joint;
- b2WeldJoint(const b2WeldJointDef* def);
- void InitVelocityConstraints(const b2SolverData& data) override;
- void SolveVelocityConstraints(const b2SolverData& data) override;
- bool SolvePositionConstraints(const b2SolverData& data) override;
- float m_stiffness;
- float m_damping;
- float m_bias;
- // Solver shared
- b2Vec2 m_localAnchorA;
- b2Vec2 m_localAnchorB;
- float m_referenceAngle;
- float m_gamma;
- b2Vec3 m_impulse;
- // Solver temp
- int32 m_indexA;
- int32 m_indexB;
- b2Vec2 m_rA;
- b2Vec2 m_rB;
- b2Vec2 m_localCenterA;
- b2Vec2 m_localCenterB;
- float m_invMassA;
- float m_invMassB;
- float m_invIA;
- float m_invIB;
- b2Mat33 m_mass;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_WHEEL_JOINT_H
- #define B2_WHEEL_JOINT_H
- //#include "b2_api.h"
- //#include "b2_joint.h"
- /// Wheel joint definition. This requires defining a line of
- /// motion using an axis and an anchor point. The definition uses local
- /// anchor points and a local axis so that the initial configuration
- /// can violate the constraint slightly. The joint translation is zero
- /// when the local anchor points coincide in world space. Using local
- /// anchors and a local axis helps when saving and loading a game.
- struct B2_API b2WheelJointDef : public b2JointDef {
- b2WheelJointDef() {
- type = e_wheelJoint;
- localAnchorA.SetZero();
- localAnchorB.SetZero();
- localAxisA.Set(1.0f, 0.0f);
- enableLimit = false;
- lowerTranslation = 0.0f;
- upperTranslation = 0.0f;
- enableMotor = false;
- maxMotorTorque = 0.0f;
- motorSpeed = 0.0f;
- stiffness = 0.0f;
- damping = 0.0f;
- }
- /// Initialize the bodies, anchors, axis, and reference angle using the world
- /// anchor and world axis.
- void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor, const b2Vec2& axis);
- /// The local anchor point relative to bodyA's origin.
- b2Vec2 localAnchorA;
- /// The local anchor point relative to bodyB's origin.
- b2Vec2 localAnchorB;
- /// The local translation axis in bodyA.
- b2Vec2 localAxisA;
- /// Enable/disable the joint limit.
- bool enableLimit;
- /// The lower translation limit, usually in meters.
- float lowerTranslation;
- /// The upper translation limit, usually in meters.
- float upperTranslation;
- /// Enable/disable the joint motor.
- bool enableMotor;
- /// The maximum motor torque, usually in N-m.
- float maxMotorTorque;
- /// The desired motor speed in radians per second.
- float motorSpeed;
- /// Suspension stiffness. Typically in units N/m.
- float stiffness;
- /// Suspension damping. Typically in units of N*s/m.
- float damping;
- };
- /// A wheel joint. This joint provides two degrees of freedom: translation
- /// along an axis fixed in bodyA and rotation in the plane. In other words, it is a point to
- /// line constraint with a rotational motor and a linear spring/damper. The spring/damper is
- /// initialized upon creation. This joint is designed for vehicle suspensions.
- class B2_API b2WheelJoint : public b2Joint {
- public:
- b2Vec2 GetAnchorA() const override;
- b2Vec2 GetAnchorB() const override;
- b2Vec2 GetReactionForce(float inv_dt) const override;
- float GetReactionTorque(float inv_dt) const override;
- /// The local anchor point relative to bodyA's origin.
- const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
- /// The local anchor point relative to bodyB's origin.
- const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; }
- /// The local joint axis relative to bodyA.
- const b2Vec2& GetLocalAxisA() const { return m_localXAxisA; }
- /// Get the current joint translation, usually in meters.
- float GetJointTranslation() const;
- /// Get the current joint linear speed, usually in meters per second.
- float GetJointLinearSpeed() const;
- /// Get the current joint angle in radians.
- float GetJointAngle() const;
- /// Get the current joint angular speed in radians per second.
- float GetJointAngularSpeed() const;
- /// Is the joint limit enabled?
- bool IsLimitEnabled() const;
- /// Enable/disable the joint translation limit.
- void EnableLimit(bool flag);
- /// Get the lower joint translation limit, usually in meters.
- float GetLowerLimit() const;
- /// Get the upper joint translation limit, usually in meters.
- float GetUpperLimit() const;
- /// Set the joint translation limits, usually in meters.
- void SetLimits(float lower, float upper);
- /// Is the joint motor enabled?
- bool IsMotorEnabled() const;
- /// Enable/disable the joint motor.
- void EnableMotor(bool flag);
- /// Set the motor speed, usually in radians per second.
- void SetMotorSpeed(float speed);
- /// Get the motor speed, usually in radians per second.
- float GetMotorSpeed() const;
- /// Set/Get the maximum motor force, usually in N-m.
- void SetMaxMotorTorque(float torque);
- float GetMaxMotorTorque() const;
- /// Get the current motor torque given the inverse time step, usually in N-m.
- float GetMotorTorque(float inv_dt) const;
- /// Access spring stiffness
- void SetStiffness(float stiffness);
- float GetStiffness() const;
- /// Access damping
- void SetDamping(float damping);
- float GetDamping() const;
- /// Dump to b2Log
- void Dump() override;
- ///
- void Draw(b2Draw* draw) const override;
- protected:
- friend class b2Joint;
- b2WheelJoint(const b2WheelJointDef* def);
- void InitVelocityConstraints(const b2SolverData& data) override;
- void SolveVelocityConstraints(const b2SolverData& data) override;
- bool SolvePositionConstraints(const b2SolverData& data) override;
- b2Vec2 m_localAnchorA;
- b2Vec2 m_localAnchorB;
- b2Vec2 m_localXAxisA;
- b2Vec2 m_localYAxisA;
- float m_impulse;
- float m_motorImpulse;
- float m_springImpulse;
- float m_lowerImpulse;
- float m_upperImpulse;
- float m_translation;
- float m_lowerTranslation;
- float m_upperTranslation;
- float m_maxMotorTorque;
- float m_motorSpeed;
- bool m_enableLimit;
- bool m_enableMotor;
- float m_stiffness;
- float m_damping;
- // Solver temp
- int32 m_indexA;
- int32 m_indexB;
- b2Vec2 m_localCenterA;
- b2Vec2 m_localCenterB;
- float m_invMassA;
- float m_invMassB;
- float m_invIA;
- float m_invIB;
- b2Vec2 m_ax, m_ay;
- float m_sAx, m_sBx;
- float m_sAy, m_sBy;
- float m_mass;
- float m_motorMass;
- float m_axialMass;
- float m_springMass;
- float m_bias;
- float m_gamma;
- };
- inline float b2WheelJoint::GetMotorSpeed() const {
- return m_motorSpeed;
- }
- inline float b2WheelJoint::GetMaxMotorTorque() const {
- return m_maxMotorTorque;
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_WORLD_CALLBACKS_H
- #define B2_WORLD_CALLBACKS_H
- //#include "b2_api.h"
- //#include "b2_settings.h"
- struct b2Vec2;
- struct b2Transform;
- class b2Fixture;
- class b2Body;
- class b2Joint;
- class b2Contact;
- struct b2ContactResult;
- struct b2Manifold;
- /// Joints and fixtures are destroyed when their associated
- /// body is destroyed. Implement this listener so that you
- /// may nullify references to these joints and shapes.
- class B2_API b2DestructionListener {
- public:
- virtual ~b2DestructionListener() {}
- /// Called when any joint is about to be destroyed due
- /// to the destruction of one of its attached bodies.
- virtual void SayGoodbye(b2Joint* joint) = 0;
- /// Called when any fixture is about to be destroyed due
- /// to the destruction of its parent body.
- virtual void SayGoodbye(b2Fixture* fixture) = 0;
- };
- /// Implement this class to provide collision filtering. In other words, you can implement
- /// this class if you want finer control over contact creation.
- class B2_API b2ContactFilter {
- public:
- virtual ~b2ContactFilter() {}
- /// Return true if contact calculations should be performed between these two shapes.
- /// @warning for performance reasons this is only called when the AABBs begin to overlap.
- virtual bool ShouldCollide(b2Fixture* fixtureA, b2Fixture* fixtureB);
- };
- /// Contact impulses for reporting. Impulses are used instead of forces because
- /// sub-step forces may approach infinity for rigid body collisions. These
- /// match up one-to-one with the contact points in b2Manifold.
- struct B2_API b2ContactImpulse {
- float normalImpulses[b2_maxManifoldPoints];
- float tangentImpulses[b2_maxManifoldPoints];
- int32 count;
- };
- /// Implement this class to get contact information. You can use these results for
- /// things like sounds and game logic. You can also get contact results by
- /// traversing the contact lists after the time step. However, you might miss
- /// some contacts because continuous physics leads to sub-stepping.
- /// Additionally you may receive multiple callbacks for the same contact in a
- /// single time step.
- /// You should strive to make your callbacks efficient because there may be
- /// many callbacks per time step.
- /// @warning You cannot create/destroy Box2D entities inside these callbacks.
- class B2_API b2ContactListener {
- public:
- virtual ~b2ContactListener() {}
- /// Called when two fixtures begin to touch.
- virtual void BeginContact(b2Contact* contact) { B2_NOT_USED(contact); }
- /// Called when two fixtures cease to touch.
- virtual void EndContact(b2Contact* contact) { B2_NOT_USED(contact); }
- /// This is called after a contact is updated. This allows you to inspect a
- /// contact before it goes to the solver. If you are careful, you can modify the
- /// contact manifold (e.g. disable contact).
- /// A copy of the old manifold is provided so that you can detect changes.
- /// Note: this is called only for awake bodies.
- /// Note: this is called even when the number of contact points is zero.
- /// Note: this is not called for sensors.
- /// Note: if you set the number of contact points to zero, you will not
- /// get an EndContact callback. However, you may get a BeginContact callback
- /// the next step.
- virtual void PreSolve(b2Contact* contact, const b2Manifold* oldManifold) {
- B2_NOT_USED(contact);
- B2_NOT_USED(oldManifold);
- }
- /// This lets you inspect a contact after the solver is finished. This is useful
- /// for inspecting impulses.
- /// Note: the contact manifold does not include time of impact impulses, which can be
- /// arbitrarily large if the sub-step is small. Hence the impulse is provided explicitly
- /// in a separate data structure.
- /// Note: this is only called for contacts that are touching, solid, and awake.
- virtual void PostSolve(b2Contact* contact, const b2ContactImpulse* impulse) {
- B2_NOT_USED(contact);
- B2_NOT_USED(impulse);
- }
- };
- /// Callback class for AABB queries.
- /// See b2World::Query
- class B2_API b2QueryCallback {
- public:
- virtual ~b2QueryCallback() {}
- /// Called for each fixture found in the query AABB.
- /// @return false to terminate the query.
- virtual bool ReportFixture(b2Fixture* fixture) = 0;
- };
- /// Callback class for ray casts.
- /// See b2World::RayCast
- class B2_API b2RayCastCallback {
- public:
- virtual ~b2RayCastCallback() {}
- /// Called for each fixture found in the query. You control how the ray cast
- /// proceeds by returning a float:
- /// return -1: ignore this fixture and continue
- /// return 0: terminate the ray cast
- /// return fraction: clip the ray to this point
- /// return 1: don't clip the ray and continue
- /// @param fixture the fixture hit by the ray
- /// @param point the point of initial intersection
- /// @param normal the normal vector at the point of intersection
- /// @param fraction the fraction along the ray at the point of intersection
- /// @return -1 to filter, 0 to terminate, fraction to clip the ray for
- /// closest hit, 1 to continue
- virtual float ReportFixture(b2Fixture* fixture, const b2Vec2& point,
- const b2Vec2& normal, float fraction) = 0;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_WORLD_H
- #define B2_WORLD_H
- //#include "b2_api.h"
- //#include "b2_block_allocator.h"
- //#include "b2_contact_manager.h"
- //#include "b2_math.h"
- //#include "b2_stack_allocator.h"
- //#include "b2_time_step.h"
- //#include "b2_world_callbacks.h"
- struct b2AABB;
- struct b2BodyDef;
- struct b2Color;
- struct b2JointDef;
- class b2Body;
- class b2Draw;
- class b2Fixture;
- class b2Joint;
- /// The world class manages all physics entities, dynamic simulation,
- /// and asynchronous queries. The world also contains efficient memory
- /// management facilities.
- class B2_API b2World {
- public:
- /// Construct a world object.
- /// @param gravity the world gravity vector.
- b2World(const b2Vec2& gravity);
- /// Destruct the world. All physics entities are destroyed and all heap memory is released.
- ~b2World();
- /// Register a destruction listener. The listener is owned by you and must
- /// remain in scope.
- void SetDestructionListener(b2DestructionListener* listener);
- /// Register a contact filter to provide specific control over collision.
- /// Otherwise the default filter is used (b2_defaultFilter). The listener is
- /// owned by you and must remain in scope.
- void SetContactFilter(b2ContactFilter* filter);
- /// Register a contact event listener. The listener is owned by you and must
- /// remain in scope.
- void SetContactListener(b2ContactListener* listener);
- /// Register a routine for debug drawing. The debug draw functions are called
- /// inside with b2World::DebugDraw method. The debug draw object is owned
- /// by you and must remain in scope.
- void SetDebugDraw(b2Draw* debugDraw);
- /// Create a rigid body given a definition. No reference to the definition
- /// is retained.
- /// @warning This function is locked during callbacks.
- b2Body* CreateBody(const b2BodyDef* def);
- /// Destroy a rigid body given a definition. No reference to the definition
- /// is retained. This function is locked during callbacks.
- /// @warning This automatically deletes all associated shapes and joints.
- /// @warning This function is locked during callbacks.
- void DestroyBody(b2Body* body);
- /// Create a joint to constrain bodies together. No reference to the definition
- /// is retained. This may cause the connected bodies to cease colliding.
- /// @warning This function is locked during callbacks.
- b2Joint* CreateJoint(const b2JointDef* def);
- /// Destroy a joint. This may cause the connected bodies to begin colliding.
- /// @warning This function is locked during callbacks.
- void DestroyJoint(b2Joint* joint);
- /// Take a time step. This performs collision detection, integration,
- /// and constraint solution.
- /// @param timeStep the amount of time to simulate, this should not vary.
- /// @param velocityIterations for the velocity constraint solver.
- /// @param positionIterations for the position constraint solver.
- void Step(float timeStep,
- int32 velocityIterations,
- int32 positionIterations);
- /// Manually clear the force buffer on all bodies. By default, forces are cleared automatically
- /// after each call to Step. The default behavior is modified by calling SetAutoClearForces.
- /// The purpose of this function is to support sub-stepping. Sub-stepping is often used to maintain
- /// a fixed sized time step under a variable frame-rate.
- /// When you perform sub-stepping you will disable auto clearing of forces and instead call
- /// ClearForces after all sub-steps are complete in one pass of your game loop.
- /// @see SetAutoClearForces
- void ClearForces();
- /// Call this to draw shapes and other debug draw data. This is intentionally non-const.
- void DebugDraw();
- /// Query the world for all fixtures that potentially overlap the
- /// provided AABB.
- /// @param callback a user implemented callback class.
- /// @param aabb the query box.
- void QueryAABB(b2QueryCallback* callback, const b2AABB& aabb) const;
- /// Ray-cast the world for all fixtures in the path of the ray. Your callback
- /// controls whether you get the closest point, any point, or n-points.
- /// The ray-cast ignores shapes that contain the starting point.
- /// @param callback a user implemented callback class.
- /// @param point1 the ray starting point
- /// @param point2 the ray ending point
- void RayCast(b2RayCastCallback* callback, const b2Vec2& point1, const b2Vec2& point2) const;
- /// Get the world body list. With the returned body, use b2Body::GetNext to get
- /// the next body in the world list. A nullptr body indicates the end of the list.
- /// @return the head of the world body list.
- b2Body* GetBodyList();
- const b2Body* GetBodyList() const;
- /// Get the world joint list. With the returned joint, use b2Joint::GetNext to get
- /// the next joint in the world list. A nullptr joint indicates the end of the list.
- /// @return the head of the world joint list.
- b2Joint* GetJointList();
- const b2Joint* GetJointList() const;
- /// Get the world contact list. With the returned contact, use b2Contact::GetNext to get
- /// the next contact in the world list. A nullptr contact indicates the end of the list.
- /// @return the head of the world contact list.
- /// @warning contacts are created and destroyed in the middle of a time step.
- /// Use b2ContactListener to avoid missing contacts.
- b2Contact* GetContactList();
- const b2Contact* GetContactList() const;
- /// Enable/disable sleep.
- void SetAllowSleeping(bool flag);
- bool GetAllowSleeping() const { return m_allowSleep; }
- /// Enable/disable warm starting. For testing.
- void SetWarmStarting(bool flag) { m_warmStarting = flag; }
- bool GetWarmStarting() const { return m_warmStarting; }
- /// Enable/disable continuous physics. For testing.
- void SetContinuousPhysics(bool flag) { m_continuousPhysics = flag; }
- bool GetContinuousPhysics() const { return m_continuousPhysics; }
- /// Enable/disable single stepped continuous physics. For testing.
- void SetSubStepping(bool flag) { m_subStepping = flag; }
- bool GetSubStepping() const { return m_subStepping; }
- /// Get the number of broad-phase proxies.
- int32 GetProxyCount() const;
- /// Get the number of bodies.
- int32 GetBodyCount() const;
- /// Get the number of joints.
- int32 GetJointCount() const;
- /// Get the number of contacts (each may have 0 or more contact points).
- int32 GetContactCount() const;
- /// Get the height of the dynamic tree.
- int32 GetTreeHeight() const;
- /// Get the balance of the dynamic tree.
- int32 GetTreeBalance() const;
- /// Get the quality metric of the dynamic tree. The smaller the better.
- /// The minimum is 1.
- float GetTreeQuality() const;
- /// Change the global gravity vector.
- void SetGravity(const b2Vec2& gravity);
- /// Get the global gravity vector.
- b2Vec2 GetGravity() const;
- /// Is the world locked (in the middle of a time step).
- bool IsLocked() const;
- /// Set flag to control automatic clearing of forces after each time step.
- void SetAutoClearForces(bool flag);
- /// Get the flag that controls automatic clearing of forces after each time step.
- bool GetAutoClearForces() const;
- /// Shift the world origin. Useful for large worlds.
- /// The body shift formula is: position -= newOrigin
- /// @param newOrigin the new origin with respect to the old origin
- void ShiftOrigin(const b2Vec2& newOrigin);
- /// Get the contact manager for testing.
- const b2ContactManager& GetContactManager() const;
- /// Get the current profile.
- const b2Profile& GetProfile() const;
- /// Dump the world into the log file.
- /// @warning this should be called outside of a time step.
- void Dump();
- private:
- friend class b2Body;
- friend class b2Fixture;
- friend class b2ContactManager;
- friend class b2Controller;
- void Solve(const b2TimeStep& step);
- void SolveTOI(const b2TimeStep& step);
- void DrawShape(b2Fixture* shape, const b2Transform& xf, const b2Color& color);
- b2BlockAllocator m_blockAllocator;
- b2StackAllocator m_stackAllocator;
- b2ContactManager m_contactManager;
- b2Body* m_bodyList;
- b2Joint* m_jointList;
- int32 m_bodyCount;
- int32 m_jointCount;
- b2Vec2 m_gravity;
- bool m_allowSleep;
- b2DestructionListener* m_destructionListener;
- b2Draw* m_debugDraw;
- // This is used to compute the time step ratio to
- // support a variable time step.
- float m_inv_dt0;
- bool m_newContacts;
- bool m_locked;
- bool m_clearForces;
- // These are for debugging the solver.
- bool m_warmStarting;
- bool m_continuousPhysics;
- bool m_subStepping;
- bool m_stepComplete;
- b2Profile m_profile;
- };
- inline b2Body* b2World::GetBodyList() {
- return m_bodyList;
- }
- inline const b2Body* b2World::GetBodyList() const {
- return m_bodyList;
- }
- inline b2Joint* b2World::GetJointList() {
- return m_jointList;
- }
- inline const b2Joint* b2World::GetJointList() const {
- return m_jointList;
- }
- inline b2Contact* b2World::GetContactList() {
- return m_contactManager.m_contactList;
- }
- inline const b2Contact* b2World::GetContactList() const {
- return m_contactManager.m_contactList;
- }
- inline int32 b2World::GetBodyCount() const {
- return m_bodyCount;
- }
- inline int32 b2World::GetJointCount() const {
- return m_jointCount;
- }
- inline int32 b2World::GetContactCount() const {
- return m_contactManager.m_contactCount;
- }
- inline void b2World::SetGravity(const b2Vec2& gravity) {
- m_gravity = gravity;
- }
- inline b2Vec2 b2World::GetGravity() const {
- return m_gravity;
- }
- inline bool b2World::IsLocked() const {
- return m_locked;
- }
- inline void b2World::SetAutoClearForces(bool flag) {
- m_clearForces = flag;
- }
- /// Get the flag that controls automatic clearing of forces after each time step.
- inline bool b2World::GetAutoClearForces() const {
- return m_clearForces;
- }
- inline const b2ContactManager& b2World::GetContactManager() const {
- return m_contactManager;
- }
- inline const b2Profile& b2World::GetProfile() const {
- return m_profile;
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_CHAIN_AND_CIRCLE_CONTACT_H
- #define B2_CHAIN_AND_CIRCLE_CONTACT_H
- //#include "box2d/b2_contact.h"
- class b2BlockAllocator;
- class b2ChainAndCircleContact : public b2Contact {
- public:
- static b2Contact* Create(b2Fixture* fixtureA, int32 indexA,
- b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator);
- static void Destroy(b2Contact* contact, b2BlockAllocator* allocator);
- b2ChainAndCircleContact(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB);
- ~b2ChainAndCircleContact() {}
- void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) override;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_CHAIN_AND_POLYGON_CONTACT_H
- #define B2_CHAIN_AND_POLYGON_CONTACT_H
- //#include "box2d/b2_contact.h"
- class b2BlockAllocator;
- class b2ChainAndPolygonContact : public b2Contact {
- public:
- static b2Contact* Create(b2Fixture* fixtureA, int32 indexA,
- b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator);
- static void Destroy(b2Contact* contact, b2BlockAllocator* allocator);
- b2ChainAndPolygonContact(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB);
- ~b2ChainAndPolygonContact() {}
- void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) override;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_CIRCLE_CONTACT_H
- #define B2_CIRCLE_CONTACT_H
- //#include "box2d/b2_contact.h"
- class b2BlockAllocator;
- class b2CircleContact : public b2Contact {
- public:
- static b2Contact* Create(b2Fixture* fixtureA, int32 indexA,
- b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator);
- static void Destroy(b2Contact* contact, b2BlockAllocator* allocator);
- b2CircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB);
- ~b2CircleContact() {}
- void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) override;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_CONTACT_SOLVER_H
- #define B2_CONTACT_SOLVER_H
- //#include "box2d/b2_collision.h"
- //#include "box2d/b2_math.h"
- //#include "box2d/b2_time_step.h"
- class b2Contact;
- class b2Body;
- class b2StackAllocator;
- struct b2ContactPositionConstraint;
- struct b2VelocityConstraintPoint {
- b2Vec2 rA;
- b2Vec2 rB;
- float normalImpulse;
- float tangentImpulse;
- float normalMass;
- float tangentMass;
- float velocityBias;
- };
- struct b2ContactVelocityConstraint {
- b2VelocityConstraintPoint points[b2_maxManifoldPoints];
- b2Vec2 normal;
- b2Mat22 normalMass;
- b2Mat22 K;
- int32 indexA;
- int32 indexB;
- float invMassA, invMassB;
- float invIA, invIB;
- float friction;
- float restitution;
- float threshold;
- float tangentSpeed;
- int32 pointCount;
- int32 contactIndex;
- };
- struct b2ContactSolverDef {
- b2TimeStep step;
- b2Contact** contacts;
- int32 count;
- b2Position* positions;
- b2Velocity* velocities;
- b2StackAllocator* allocator;
- };
- class b2ContactSolver {
- public:
- b2ContactSolver(b2ContactSolverDef* def);
- ~b2ContactSolver();
- void InitializeVelocityConstraints();
- void WarmStart();
- void SolveVelocityConstraints();
- void StoreImpulses();
- bool SolvePositionConstraints();
- bool SolveTOIPositionConstraints(int32 toiIndexA, int32 toiIndexB);
- b2TimeStep m_step;
- b2Position* m_positions;
- b2Velocity* m_velocities;
- b2StackAllocator* m_allocator;
- b2ContactPositionConstraint* m_positionConstraints;
- b2ContactVelocityConstraint* m_velocityConstraints;
- b2Contact** m_contacts;
- int m_count;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_EDGE_AND_CIRCLE_CONTACT_H
- #define B2_EDGE_AND_CIRCLE_CONTACT_H
- //#include "box2d/b2_contact.h"
- class b2BlockAllocator;
- class b2EdgeAndCircleContact : public b2Contact {
- public:
- static b2Contact* Create(b2Fixture* fixtureA, int32 indexA,
- b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator);
- static void Destroy(b2Contact* contact, b2BlockAllocator* allocator);
- b2EdgeAndCircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB);
- ~b2EdgeAndCircleContact() {}
- void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) override;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_EDGE_AND_POLYGON_CONTACT_H
- #define B2_EDGE_AND_POLYGON_CONTACT_H
- //#include "box2d/b2_contact.h"
- class b2BlockAllocator;
- class b2EdgeAndPolygonContact : public b2Contact {
- public:
- static b2Contact* Create(b2Fixture* fixtureA, int32 indexA,
- b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator);
- static void Destroy(b2Contact* contact, b2BlockAllocator* allocator);
- b2EdgeAndPolygonContact(b2Fixture* fixtureA, b2Fixture* fixtureB);
- ~b2EdgeAndPolygonContact() {}
- void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) override;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_ISLAND_H
- #define B2_ISLAND_H
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_math.h"
- //#include "box2d/b2_time_step.h"
- class b2Contact;
- class b2Joint;
- class b2StackAllocator;
- class b2ContactListener;
- struct b2ContactVelocityConstraint;
- struct b2Profile;
- /// This is an internal class.
- class b2Island {
- public:
- b2Island(int32 bodyCapacity, int32 contactCapacity, int32 jointCapacity,
- b2StackAllocator* allocator, b2ContactListener* listener);
- ~b2Island();
- void Clear() {
- m_bodyCount = 0;
- m_contactCount = 0;
- m_jointCount = 0;
- }
- void Solve(b2Profile* profile, const b2TimeStep& step, const b2Vec2& gravity, bool allowSleep);
- void SolveTOI(const b2TimeStep& subStep, int32 toiIndexA, int32 toiIndexB);
- void Add(b2Body* body) {
- b2Assert(m_bodyCount < m_bodyCapacity);
- body->m_islandIndex = m_bodyCount;
- m_bodies[m_bodyCount] = body;
- ++m_bodyCount;
- }
- void Add(b2Contact* contact) {
- b2Assert(m_contactCount < m_contactCapacity);
- m_contacts[m_contactCount++] = contact;
- }
- void Add(b2Joint* joint) {
- b2Assert(m_jointCount < m_jointCapacity);
- m_joints[m_jointCount++] = joint;
- }
- void Report(const b2ContactVelocityConstraint* constraints);
- b2StackAllocator* m_allocator;
- b2ContactListener* m_listener;
- b2Body** m_bodies;
- b2Contact** m_contacts;
- b2Joint** m_joints;
- b2Position* m_positions;
- b2Velocity* m_velocities;
- int32 m_bodyCount;
- int32 m_jointCount;
- int32 m_contactCount;
- int32 m_bodyCapacity;
- int32 m_contactCapacity;
- int32 m_jointCapacity;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_POLYGON_AND_CIRCLE_CONTACT_H
- #define B2_POLYGON_AND_CIRCLE_CONTACT_H
- //#include "box2d/b2_contact.h"
- class b2BlockAllocator;
- class b2PolygonAndCircleContact : public b2Contact {
- public:
- static b2Contact* Create(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator);
- static void Destroy(b2Contact* contact, b2BlockAllocator* allocator);
- b2PolygonAndCircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB);
- ~b2PolygonAndCircleContact() {}
- void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) override;
- };
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_POLYGON_CONTACT_H
- #define B2_POLYGON_CONTACT_H
- //#include "box2d/b2_contact.h"
- class b2BlockAllocator;
- class b2PolygonContact : public b2Contact {
- public:
- static b2Contact* Create(b2Fixture* fixtureA, int32 indexA,
- b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator);
- static void Destroy(b2Contact* contact, b2BlockAllocator* allocator);
- b2PolygonContact(b2Fixture* fixtureA, b2Fixture* fixtureB);
- ~b2PolygonContact() {}
- void Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) override;
- };
- #endif
- #ifndef BOX2D_IMPL
- #define BOX2D_IMPL
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_broad_phase.h"
- #include <string.h>
- b2BroadPhase::b2BroadPhase() {
- m_proxyCount = 0;
- m_pairCapacity = 16;
- m_pairCount = 0;
- m_pairBuffer = (b2Pair*)b2Alloc(m_pairCapacity * sizeof(b2Pair));
- m_moveCapacity = 16;
- m_moveCount = 0;
- m_moveBuffer = (int32*)b2Alloc(m_moveCapacity * sizeof(int32));
- }
- b2BroadPhase::~b2BroadPhase() {
- b2Free(m_moveBuffer);
- b2Free(m_pairBuffer);
- }
- int32 b2BroadPhase::CreateProxy(const b2AABB& aabb, void* userData) {
- int32 proxyId = m_tree.CreateProxy(aabb, userData);
- ++m_proxyCount;
- BufferMove(proxyId);
- return proxyId;
- }
- void b2BroadPhase::DestroyProxy(int32 proxyId) {
- UnBufferMove(proxyId);
- --m_proxyCount;
- m_tree.DestroyProxy(proxyId);
- }
- void b2BroadPhase::MoveProxy(int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement) {
- bool buffer = m_tree.MoveProxy(proxyId, aabb, displacement);
- if (buffer) {
- BufferMove(proxyId);
- }
- }
- void b2BroadPhase::TouchProxy(int32 proxyId) {
- BufferMove(proxyId);
- }
- void b2BroadPhase::BufferMove(int32 proxyId) {
- if (m_moveCount == m_moveCapacity) {
- int32* oldBuffer = m_moveBuffer;
- m_moveCapacity *= 2;
- m_moveBuffer = (int32*)b2Alloc(m_moveCapacity * sizeof(int32));
- memcpy(m_moveBuffer, oldBuffer, m_moveCount * sizeof(int32));
- b2Free(oldBuffer);
- }
- m_moveBuffer[m_moveCount] = proxyId;
- ++m_moveCount;
- }
- void b2BroadPhase::UnBufferMove(int32 proxyId) {
- for (int32 i = 0; i < m_moveCount; ++i) {
- if (m_moveBuffer[i] == proxyId) {
- m_moveBuffer[i] = e_nullProxy;
- }
- }
- }
- // This is called from b2DynamicTree::Query when we are gathering pairs.
- bool b2BroadPhase::QueryCallback(int32 proxyId) {
- // A proxy cannot form a pair with itself.
- if (proxyId == m_queryProxyId) {
- return true;
- }
- const bool moved = m_tree.WasMoved(proxyId);
- if (moved && proxyId > m_queryProxyId) {
- // Both proxies are moving. Avoid duplicate pairs.
- return true;
- }
- // Grow the pair buffer as needed.
- if (m_pairCount == m_pairCapacity) {
- b2Pair* oldBuffer = m_pairBuffer;
- m_pairCapacity = m_pairCapacity + (m_pairCapacity >> 1);
- m_pairBuffer = (b2Pair*)b2Alloc(m_pairCapacity * sizeof(b2Pair));
- memcpy(m_pairBuffer, oldBuffer, m_pairCount * sizeof(b2Pair));
- b2Free(oldBuffer);
- }
- m_pairBuffer[m_pairCount].proxyIdA = b2Min(proxyId, m_queryProxyId);
- m_pairBuffer[m_pairCount].proxyIdB = b2Max(proxyId, m_queryProxyId);
- ++m_pairCount;
- return true;
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_chain_shape.h"
- //#include "box2d/b2_edge_shape.h"
- //#include "box2d/b2_block_allocator.h"
- #include <new>
- #include <string.h>
- b2ChainShape::~b2ChainShape() {
- Clear();
- }
- void b2ChainShape::Clear() {
- b2Free(m_vertices);
- m_vertices = nullptr;
- m_count = 0;
- }
- void b2ChainShape::CreateLoop(const b2Vec2* vertices, int32 count) {
- b2Assert(m_vertices == nullptr && m_count == 0);
- b2Assert(count >= 3);
- if (count < 3) {
- return;
- }
- for (int32 i = 1; i < count; ++i) {
- b2Vec2 v1 = vertices[i - 1];
- b2Vec2 v2 = vertices[i];
- // If the code crashes here, it means your vertices are too close together.
- b2Assert(b2DistanceSquared(v1, v2) > b2_linearSlop * b2_linearSlop);
- }
- m_count = count + 1;
- m_vertices = (b2Vec2*)b2Alloc(m_count * sizeof(b2Vec2));
- memcpy(m_vertices, vertices, count * sizeof(b2Vec2));
- m_vertices[count] = m_vertices[0];
- m_prevVertex = m_vertices[m_count - 2];
- m_nextVertex = m_vertices[1];
- }
- void b2ChainShape::CreateChain(const b2Vec2* vertices, int32 count, const b2Vec2& prevVertex, const b2Vec2& nextVertex) {
- b2Assert(m_vertices == nullptr && m_count == 0);
- b2Assert(count >= 2);
- for (int32 i = 1; i < count; ++i) {
- // If the code crashes here, it means your vertices are too close together.
- b2Assert(b2DistanceSquared(vertices[i - 1], vertices[i]) > b2_linearSlop * b2_linearSlop);
- }
- m_count = count;
- m_vertices = (b2Vec2*)b2Alloc(count * sizeof(b2Vec2));
- memcpy(m_vertices, vertices, m_count * sizeof(b2Vec2));
- m_prevVertex = prevVertex;
- m_nextVertex = nextVertex;
- }
- b2Shape* b2ChainShape::Clone(b2BlockAllocator* allocator) const {
- void* mem = allocator->Allocate(sizeof(b2ChainShape));
- b2ChainShape* clone = new (mem) b2ChainShape;
- clone->CreateChain(m_vertices, m_count, m_prevVertex, m_nextVertex);
- return clone;
- }
- int32 b2ChainShape::GetChildCount() const {
- // edge count = vertex count - 1
- return m_count - 1;
- }
- void b2ChainShape::GetChildEdge(b2EdgeShape* edge, int32 index) const {
- b2Assert(0 <= index && index < m_count - 1);
- edge->m_type = b2Shape::e_edge;
- edge->m_radius = m_radius;
- edge->m_vertex1 = m_vertices[index + 0];
- edge->m_vertex2 = m_vertices[index + 1];
- edge->m_oneSided = true;
- if (index > 0) {
- edge->m_vertex0 = m_vertices[index - 1];
- } else {
- edge->m_vertex0 = m_prevVertex;
- }
- if (index < m_count - 2) {
- edge->m_vertex3 = m_vertices[index + 2];
- } else {
- edge->m_vertex3 = m_nextVertex;
- }
- }
- bool b2ChainShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const {
- B2_NOT_USED(xf);
- B2_NOT_USED(p);
- return false;
- }
- bool b2ChainShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
- const b2Transform& xf, int32 childIndex) const {
- b2Assert(childIndex < m_count);
- b2EdgeShape edgeShape;
- int32 i1 = childIndex;
- int32 i2 = childIndex + 1;
- if (i2 == m_count) {
- i2 = 0;
- }
- edgeShape.m_vertex1 = m_vertices[i1];
- edgeShape.m_vertex2 = m_vertices[i2];
- return edgeShape.RayCast(output, input, xf, 0);
- }
- void b2ChainShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const {
- b2Assert(childIndex < m_count);
- int32 i1 = childIndex;
- int32 i2 = childIndex + 1;
- if (i2 == m_count) {
- i2 = 0;
- }
- b2Vec2 v1 = b2Mul(xf, m_vertices[i1]);
- b2Vec2 v2 = b2Mul(xf, m_vertices[i2]);
- b2Vec2 lower = b2Min(v1, v2);
- b2Vec2 upper = b2Max(v1, v2);
- b2Vec2 r(m_radius, m_radius);
- aabb->lowerBound = lower - r;
- aabb->upperBound = upper + r;
- }
- void b2ChainShape::ComputeMass(b2MassData* massData, float density) const {
- B2_NOT_USED(density);
- massData->mass = 0.0f;
- massData->center.SetZero();
- massData->I = 0.0f;
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_circle_shape.h"
- //#include "box2d/b2_block_allocator.h"
- #include <new>
- b2Shape* b2CircleShape::Clone(b2BlockAllocator* allocator) const {
- void* mem = allocator->Allocate(sizeof(b2CircleShape));
- b2CircleShape* clone = new (mem) b2CircleShape;
- *clone = *this;
- return clone;
- }
- int32 b2CircleShape::GetChildCount() const {
- return 1;
- }
- bool b2CircleShape::TestPoint(const b2Transform& transform, const b2Vec2& p) const {
- b2Vec2 center = transform.p + b2Mul(transform.q, m_p);
- b2Vec2 d = p - center;
- return b2Dot(d, d) <= m_radius * m_radius;
- }
- // Collision Detection in Interactive 3D Environments by Gino van den Bergen
- // From Section 3.1.2
- // x = s + a * r
- // norm(x) = radius
- bool b2CircleShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
- const b2Transform& transform, int32 childIndex) const {
- B2_NOT_USED(childIndex);
- b2Vec2 position = transform.p + b2Mul(transform.q, m_p);
- b2Vec2 s = input.p1 - position;
- float b = b2Dot(s, s) - m_radius * m_radius;
- // Solve quadratic equation.
- b2Vec2 r = input.p2 - input.p1;
- float c = b2Dot(s, r);
- float rr = b2Dot(r, r);
- float sigma = c * c - rr * b;
- // Check for negative discriminant and short segment.
- if (sigma < 0.0f || rr < b2_epsilon) {
- return false;
- }
- // Find the point of intersection of the line with the circle.
- float a = -(c + b2Sqrt(sigma));
- // Is the intersection point on the segment?
- if (0.0f <= a && a <= input.maxFraction * rr) {
- a /= rr;
- output->fraction = a;
- output->normal = s + a * r;
- output->normal.Normalize();
- return true;
- }
- return false;
- }
- void b2CircleShape::ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const {
- B2_NOT_USED(childIndex);
- b2Vec2 p = transform.p + b2Mul(transform.q, m_p);
- aabb->lowerBound.Set(p.x - m_radius, p.y - m_radius);
- aabb->upperBound.Set(p.x + m_radius, p.y + m_radius);
- }
- void b2CircleShape::ComputeMass(b2MassData* massData, float density) const {
- massData->mass = density * b2_pi * m_radius * m_radius;
- massData->center = m_p;
- // inertia about the local origin
- massData->I = massData->mass * (0.5f * m_radius * m_radius + b2Dot(m_p, m_p));
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_collision.h"
- //#include "box2d/b2_circle_shape.h"
- //#include "box2d/b2_polygon_shape.h"
- void b2CollideCircles(
- b2Manifold* manifold,
- const b2CircleShape* circleA, const b2Transform& xfA,
- const b2CircleShape* circleB, const b2Transform& xfB) {
- manifold->pointCount = 0;
- b2Vec2 pA = b2Mul(xfA, circleA->m_p);
- b2Vec2 pB = b2Mul(xfB, circleB->m_p);
- b2Vec2 d = pB - pA;
- float distSqr = b2Dot(d, d);
- float rA = circleA->m_radius, rB = circleB->m_radius;
- float radius = rA + rB;
- if (distSqr > radius * radius) {
- return;
- }
- manifold->type = b2Manifold::e_circles;
- manifold->localPoint = circleA->m_p;
- manifold->localNormal.SetZero();
- manifold->pointCount = 1;
- manifold->points[0].localPoint = circleB->m_p;
- manifold->points[0].id.key = 0;
- }
- void b2CollidePolygonAndCircle(
- b2Manifold* manifold,
- const b2PolygonShape* polygonA, const b2Transform& xfA,
- const b2CircleShape* circleB, const b2Transform& xfB) {
- manifold->pointCount = 0;
- // Compute circle position in the frame of the polygon.
- b2Vec2 c = b2Mul(xfB, circleB->m_p);
- b2Vec2 cLocal = b2MulT(xfA, c);
- // Find the min separating edge.
- int32 normalIndex = 0;
- float separation = -b2_maxFloat;
- float radius = polygonA->m_radius + circleB->m_radius;
- int32 vertexCount = polygonA->m_count;
- const b2Vec2* vertices = polygonA->m_vertices;
- const b2Vec2* normals = polygonA->m_normals;
- for (int32 i = 0; i < vertexCount; ++i) {
- float s = b2Dot(normals[i], cLocal - vertices[i]);
- if (s > radius) {
- // Early out.
- return;
- }
- if (s > separation) {
- separation = s;
- normalIndex = i;
- }
- }
- // Vertices that subtend the incident face.
- int32 vertIndex1 = normalIndex;
- int32 vertIndex2 = vertIndex1 + 1 < vertexCount ? vertIndex1 + 1 : 0;
- b2Vec2 v1 = vertices[vertIndex1];
- b2Vec2 v2 = vertices[vertIndex2];
- // If the center is inside the polygon ...
- if (separation < b2_epsilon) {
- manifold->pointCount = 1;
- manifold->type = b2Manifold::e_faceA;
- manifold->localNormal = normals[normalIndex];
- manifold->localPoint = 0.5f * (v1 + v2);
- manifold->points[0].localPoint = circleB->m_p;
- manifold->points[0].id.key = 0;
- return;
- }
- // Compute barycentric coordinates
- float u1 = b2Dot(cLocal - v1, v2 - v1);
- float u2 = b2Dot(cLocal - v2, v1 - v2);
- if (u1 <= 0.0f) {
- if (b2DistanceSquared(cLocal, v1) > radius * radius) {
- return;
- }
- manifold->pointCount = 1;
- manifold->type = b2Manifold::e_faceA;
- manifold->localNormal = cLocal - v1;
- manifold->localNormal.Normalize();
- manifold->localPoint = v1;
- manifold->points[0].localPoint = circleB->m_p;
- manifold->points[0].id.key = 0;
- } else if (u2 <= 0.0f) {
- if (b2DistanceSquared(cLocal, v2) > radius * radius) {
- return;
- }
- manifold->pointCount = 1;
- manifold->type = b2Manifold::e_faceA;
- manifold->localNormal = cLocal - v2;
- manifold->localNormal.Normalize();
- manifold->localPoint = v2;
- manifold->points[0].localPoint = circleB->m_p;
- manifold->points[0].id.key = 0;
- } else {
- b2Vec2 faceCenter = 0.5f * (v1 + v2);
- float s = b2Dot(cLocal - faceCenter, normals[vertIndex1]);
- if (s > radius) {
- return;
- }
- manifold->pointCount = 1;
- manifold->type = b2Manifold::e_faceA;
- manifold->localNormal = normals[vertIndex1];
- manifold->localPoint = faceCenter;
- manifold->points[0].localPoint = circleB->m_p;
- manifold->points[0].id.key = 0;
- }
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_collision.h"
- //#include "box2d/b2_circle_shape.h"
- //#include "box2d/b2_edge_shape.h"
- //#include "box2d/b2_polygon_shape.h"
- // Compute contact points for edge versus circle.
- // This accounts for edge connectivity.
- void b2CollideEdgeAndCircle(b2Manifold* manifold,
- const b2EdgeShape* edgeA, const b2Transform& xfA,
- const b2CircleShape* circleB, const b2Transform& xfB) {
- manifold->pointCount = 0;
- // Compute circle in frame of edge
- b2Vec2 Q = b2MulT(xfA, b2Mul(xfB, circleB->m_p));
- b2Vec2 A = edgeA->m_vertex1, B = edgeA->m_vertex2;
- b2Vec2 e = B - A;
- // Normal points to the right for a CCW winding
- b2Vec2 n(e.y, -e.x);
- float offset = b2Dot(n, Q - A);
- bool oneSided = edgeA->m_oneSided;
- if (oneSided && offset < 0.0f) {
- return;
- }
- // Barycentric coordinates
- float u = b2Dot(e, B - Q);
- float v = b2Dot(e, Q - A);
- float radius = edgeA->m_radius + circleB->m_radius;
- b2ContactFeature cf;
- cf.indexB = 0;
- cf.typeB = b2ContactFeature::e_vertex;
- // Region A
- if (v <= 0.0f) {
- b2Vec2 P = A;
- b2Vec2 d = Q - P;
- float dd = b2Dot(d, d);
- if (dd > radius * radius) {
- return;
- }
- // Is there an edge connected to A?
- if (edgeA->m_oneSided) {
- b2Vec2 A1 = edgeA->m_vertex0;
- b2Vec2 B1 = A;
- b2Vec2 e1 = B1 - A1;
- float u1 = b2Dot(e1, B1 - Q);
- // Is the circle in Region AB of the previous edge?
- if (u1 > 0.0f) {
- return;
- }
- }
- cf.indexA = 0;
- cf.typeA = b2ContactFeature::e_vertex;
- manifold->pointCount = 1;
- manifold->type = b2Manifold::e_circles;
- manifold->localNormal.SetZero();
- manifold->localPoint = P;
- manifold->points[0].id.key = 0;
- manifold->points[0].id.cf = cf;
- manifold->points[0].localPoint = circleB->m_p;
- return;
- }
- // Region B
- if (u <= 0.0f) {
- b2Vec2 P = B;
- b2Vec2 d = Q - P;
- float dd = b2Dot(d, d);
- if (dd > radius * radius) {
- return;
- }
- // Is there an edge connected to B?
- if (edgeA->m_oneSided) {
- b2Vec2 B2 = edgeA->m_vertex3;
- b2Vec2 A2 = B;
- b2Vec2 e2 = B2 - A2;
- float v2 = b2Dot(e2, Q - A2);
- // Is the circle in Region AB of the next edge?
- if (v2 > 0.0f) {
- return;
- }
- }
- cf.indexA = 1;
- cf.typeA = b2ContactFeature::e_vertex;
- manifold->pointCount = 1;
- manifold->type = b2Manifold::e_circles;
- manifold->localNormal.SetZero();
- manifold->localPoint = P;
- manifold->points[0].id.key = 0;
- manifold->points[0].id.cf = cf;
- manifold->points[0].localPoint = circleB->m_p;
- return;
- }
- // Region AB
- float den = b2Dot(e, e);
- b2Assert(den > 0.0f);
- b2Vec2 P = (1.0f / den) * (u * A + v * B);
- b2Vec2 d = Q - P;
- float dd = b2Dot(d, d);
- if (dd > radius * radius) {
- return;
- }
- if (offset < 0.0f) {
- n.Set(-n.x, -n.y);
- }
- n.Normalize();
- cf.indexA = 0;
- cf.typeA = b2ContactFeature::e_face;
- manifold->pointCount = 1;
- manifold->type = b2Manifold::e_faceA;
- manifold->localNormal = n;
- manifold->localPoint = A;
- manifold->points[0].id.key = 0;
- manifold->points[0].id.cf = cf;
- manifold->points[0].localPoint = circleB->m_p;
- }
- // This structure is used to keep track of the best separating axis.
- struct b2EPAxis {
- enum Type {
- e_unknown,
- e_edgeA,
- e_edgeB
- };
- b2Vec2 normal;
- Type type;
- int32 index;
- float separation;
- };
- // This holds polygon B expressed in frame A.
- struct b2TempPolygon {
- b2Vec2 vertices[b2_maxPolygonVertices];
- b2Vec2 normals[b2_maxPolygonVertices];
- int32 count;
- };
- // Reference face used for clipping
- struct b2ReferenceFace {
- int32 i1, i2;
- b2Vec2 v1, v2;
- b2Vec2 normal;
- b2Vec2 sideNormal1;
- float sideOffset1;
- b2Vec2 sideNormal2;
- float sideOffset2;
- };
- static b2EPAxis b2ComputeEdgeSeparation(const b2TempPolygon& polygonB, const b2Vec2& v1, const b2Vec2& normal1) {
- b2EPAxis axis;
- axis.type = b2EPAxis::e_edgeA;
- axis.index = -1;
- axis.separation = -FLT_MAX;
- axis.normal.SetZero();
- b2Vec2 axes[2] = { normal1, -normal1 };
- // Find axis with least overlap (min-max problem)
- for (int32 j = 0; j < 2; ++j) {
- float sj = FLT_MAX;
- // Find deepest polygon vertex along axis j
- for (int32 i = 0; i < polygonB.count; ++i) {
- float si = b2Dot(axes[j], polygonB.vertices[i] - v1);
- if (si < sj) {
- sj = si;
- }
- }
- if (sj > axis.separation) {
- axis.index = j;
- axis.separation = sj;
- axis.normal = axes[j];
- }
- }
- return axis;
- }
- static b2EPAxis b2ComputePolygonSeparation(const b2TempPolygon& polygonB, const b2Vec2& v1, const b2Vec2& v2) {
- b2EPAxis axis;
- axis.type = b2EPAxis::e_unknown;
- axis.index = -1;
- axis.separation = -FLT_MAX;
- axis.normal.SetZero();
- for (int32 i = 0; i < polygonB.count; ++i) {
- b2Vec2 n = -polygonB.normals[i];
- float s1 = b2Dot(n, polygonB.vertices[i] - v1);
- float s2 = b2Dot(n, polygonB.vertices[i] - v2);
- float s = b2Min(s1, s2);
- if (s > axis.separation) {
- axis.type = b2EPAxis::e_edgeB;
- axis.index = i;
- axis.separation = s;
- axis.normal = n;
- }
- }
- return axis;
- }
- void b2CollideEdgeAndPolygon(b2Manifold* manifold,
- const b2EdgeShape* edgeA, const b2Transform& xfA,
- const b2PolygonShape* polygonB, const b2Transform& xfB) {
- manifold->pointCount = 0;
- b2Transform xf = b2MulT(xfA, xfB);
- b2Vec2 centroidB = b2Mul(xf, polygonB->m_centroid);
- b2Vec2 v1 = edgeA->m_vertex1;
- b2Vec2 v2 = edgeA->m_vertex2;
- b2Vec2 edge1 = v2 - v1;
- edge1.Normalize();
- // Normal points to the right for a CCW winding
- b2Vec2 normal1(edge1.y, -edge1.x);
- float offset1 = b2Dot(normal1, centroidB - v1);
- bool oneSided = edgeA->m_oneSided;
- if (oneSided && offset1 < 0.0f) {
- return;
- }
- // Get polygonB in frameA
- b2TempPolygon tempPolygonB;
- tempPolygonB.count = polygonB->m_count;
- for (int32 i = 0; i < polygonB->m_count; ++i) {
- tempPolygonB.vertices[i] = b2Mul(xf, polygonB->m_vertices[i]);
- tempPolygonB.normals[i] = b2Mul(xf.q, polygonB->m_normals[i]);
- }
- float radius = polygonB->m_radius + edgeA->m_radius;
- b2EPAxis edgeAxis = b2ComputeEdgeSeparation(tempPolygonB, v1, normal1);
- if (edgeAxis.separation > radius) {
- return;
- }
- b2EPAxis polygonAxis = b2ComputePolygonSeparation(tempPolygonB, v1, v2);
- if (polygonAxis.separation > radius) {
- return;
- }
- // Use hysteresis for jitter reduction.
- const float k_relativeTol = 0.98f;
- const float k_absoluteTol = 0.001f;
- b2EPAxis primaryAxis;
- if (polygonAxis.separation - radius > k_relativeTol * (edgeAxis.separation - radius) + k_absoluteTol) {
- primaryAxis = polygonAxis;
- } else {
- primaryAxis = edgeAxis;
- }
- if (oneSided) {
- // Smooth collision
- // See https://box2d.org/posts/2020/06/ghost-collisions/
- b2Vec2 edge0 = v1 - edgeA->m_vertex0;
- edge0.Normalize();
- b2Vec2 normal0(edge0.y, -edge0.x);
- bool convex1 = b2Cross(edge0, edge1) >= 0.0f;
- b2Vec2 edge2 = edgeA->m_vertex3 - v2;
- edge2.Normalize();
- b2Vec2 normal2(edge2.y, -edge2.x);
- bool convex2 = b2Cross(edge1, edge2) >= 0.0f;
- const float sinTol = 0.1f;
- bool side1 = b2Dot(primaryAxis.normal, edge1) <= 0.0f;
- // Check Gauss Map
- if (side1) {
- if (convex1) {
- if (b2Cross(primaryAxis.normal, normal0) > sinTol) {
- // Skip region
- return;
- }
- // Admit region
- } else {
- // Snap region
- primaryAxis = edgeAxis;
- }
- } else {
- if (convex2) {
- if (b2Cross(normal2, primaryAxis.normal) > sinTol) {
- // Skip region
- return;
- }
- // Admit region
- } else {
- // Snap region
- primaryAxis = edgeAxis;
- }
- }
- }
- b2ClipVertex clipPoints[2];
- b2ReferenceFace ref;
- if (primaryAxis.type == b2EPAxis::e_edgeA) {
- manifold->type = b2Manifold::e_faceA;
- // Search for the polygon normal that is most anti-parallel to the edge normal.
- int32 bestIndex = 0;
- float bestValue = b2Dot(primaryAxis.normal, tempPolygonB.normals[0]);
- for (int32 i = 1; i < tempPolygonB.count; ++i) {
- float value = b2Dot(primaryAxis.normal, tempPolygonB.normals[i]);
- if (value < bestValue) {
- bestValue = value;
- bestIndex = i;
- }
- }
- int32 i1 = bestIndex;
- int32 i2 = i1 + 1 < tempPolygonB.count ? i1 + 1 : 0;
- clipPoints[0].v = tempPolygonB.vertices[i1];
- clipPoints[0].id.cf.indexA = 0;
- clipPoints[0].id.cf.indexB = static_cast<uint8>(i1);
- clipPoints[0].id.cf.typeA = b2ContactFeature::e_face;
- clipPoints[0].id.cf.typeB = b2ContactFeature::e_vertex;
- clipPoints[1].v = tempPolygonB.vertices[i2];
- clipPoints[1].id.cf.indexA = 0;
- clipPoints[1].id.cf.indexB = static_cast<uint8>(i2);
- clipPoints[1].id.cf.typeA = b2ContactFeature::e_face;
- clipPoints[1].id.cf.typeB = b2ContactFeature::e_vertex;
- ref.i1 = 0;
- ref.i2 = 1;
- ref.v1 = v1;
- ref.v2 = v2;
- ref.normal = primaryAxis.normal;
- ref.sideNormal1 = -edge1;
- ref.sideNormal2 = edge1;
- } else {
- manifold->type = b2Manifold::e_faceB;
- clipPoints[0].v = v2;
- clipPoints[0].id.cf.indexA = 1;
- clipPoints[0].id.cf.indexB = static_cast<uint8>(primaryAxis.index);
- clipPoints[0].id.cf.typeA = b2ContactFeature::e_vertex;
- clipPoints[0].id.cf.typeB = b2ContactFeature::e_face;
- clipPoints[1].v = v1;
- clipPoints[1].id.cf.indexA = 0;
- clipPoints[1].id.cf.indexB = static_cast<uint8>(primaryAxis.index);
- clipPoints[1].id.cf.typeA = b2ContactFeature::e_vertex;
- clipPoints[1].id.cf.typeB = b2ContactFeature::e_face;
- ref.i1 = primaryAxis.index;
- ref.i2 = ref.i1 + 1 < tempPolygonB.count ? ref.i1 + 1 : 0;
- ref.v1 = tempPolygonB.vertices[ref.i1];
- ref.v2 = tempPolygonB.vertices[ref.i2];
- ref.normal = tempPolygonB.normals[ref.i1];
- // CCW winding
- ref.sideNormal1.Set(ref.normal.y, -ref.normal.x);
- ref.sideNormal2 = -ref.sideNormal1;
- }
- ref.sideOffset1 = b2Dot(ref.sideNormal1, ref.v1);
- ref.sideOffset2 = b2Dot(ref.sideNormal2, ref.v2);
- // Clip incident edge against reference face side planes
- b2ClipVertex clipPoints1[2];
- b2ClipVertex clipPoints2[2];
- int32 np;
- // Clip to side 1
- np = b2ClipSegmentToLine(clipPoints1, clipPoints, ref.sideNormal1, ref.sideOffset1, ref.i1);
- if (np < b2_maxManifoldPoints) {
- return;
- }
- // Clip to side 2
- np = b2ClipSegmentToLine(clipPoints2, clipPoints1, ref.sideNormal2, ref.sideOffset2, ref.i2);
- if (np < b2_maxManifoldPoints) {
- return;
- }
- // Now clipPoints2 contains the clipped points.
- if (primaryAxis.type == b2EPAxis::e_edgeA) {
- manifold->localNormal = ref.normal;
- manifold->localPoint = ref.v1;
- } else {
- manifold->localNormal = polygonB->m_normals[ref.i1];
- manifold->localPoint = polygonB->m_vertices[ref.i1];
- }
- int32 pointCount = 0;
- for (int32 i = 0; i < b2_maxManifoldPoints; ++i) {
- float separation;
- separation = b2Dot(ref.normal, clipPoints2[i].v - ref.v1);
- if (separation <= radius) {
- b2ManifoldPoint* cp = manifold->points + pointCount;
- if (primaryAxis.type == b2EPAxis::e_edgeA) {
- cp->localPoint = b2MulT(xf, clipPoints2[i].v);
- cp->id = clipPoints2[i].id;
- } else {
- cp->localPoint = clipPoints2[i].v;
- cp->id.cf.typeA = clipPoints2[i].id.cf.typeB;
- cp->id.cf.typeB = clipPoints2[i].id.cf.typeA;
- cp->id.cf.indexA = clipPoints2[i].id.cf.indexB;
- cp->id.cf.indexB = clipPoints2[i].id.cf.indexA;
- }
- ++pointCount;
- }
- }
- manifold->pointCount = pointCount;
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_collision.h"
- //#include "box2d/b2_polygon_shape.h"
- // Find the max separation between poly1 and poly2 using edge normals from poly1.
- static float b2FindMaxSeparation(int32* edgeIndex,
- const b2PolygonShape* poly1, const b2Transform& xf1,
- const b2PolygonShape* poly2, const b2Transform& xf2) {
- int32 count1 = poly1->m_count;
- int32 count2 = poly2->m_count;
- const b2Vec2* n1s = poly1->m_normals;
- const b2Vec2* v1s = poly1->m_vertices;
- const b2Vec2* v2s = poly2->m_vertices;
- b2Transform xf = b2MulT(xf2, xf1);
- int32 bestIndex = 0;
- float maxSeparation = -b2_maxFloat;
- for (int32 i = 0; i < count1; ++i) {
- // Get poly1 normal in frame2.
- b2Vec2 n = b2Mul(xf.q, n1s[i]);
- b2Vec2 v1 = b2Mul(xf, v1s[i]);
- // Find deepest point for normal i.
- float si = b2_maxFloat;
- for (int32 j = 0; j < count2; ++j) {
- float sij = b2Dot(n, v2s[j] - v1);
- if (sij < si) {
- si = sij;
- }
- }
- if (si > maxSeparation) {
- maxSeparation = si;
- bestIndex = i;
- }
- }
- *edgeIndex = bestIndex;
- return maxSeparation;
- }
- static void b2FindIncidentEdge(b2ClipVertex c[2],
- const b2PolygonShape* poly1, const b2Transform& xf1, int32 edge1,
- const b2PolygonShape* poly2, const b2Transform& xf2) {
- const b2Vec2* normals1 = poly1->m_normals;
- int32 count2 = poly2->m_count;
- const b2Vec2* vertices2 = poly2->m_vertices;
- const b2Vec2* normals2 = poly2->m_normals;
- b2Assert(0 <= edge1 && edge1 < poly1->m_count);
- // Get the normal of the reference edge in poly2's frame.
- b2Vec2 normal1 = b2MulT(xf2.q, b2Mul(xf1.q, normals1[edge1]));
- // Find the incident edge on poly2.
- int32 index = 0;
- float minDot = b2_maxFloat;
- for (int32 i = 0; i < count2; ++i) {
- float dot = b2Dot(normal1, normals2[i]);
- if (dot < minDot) {
- minDot = dot;
- index = i;
- }
- }
- // Build the clip vertices for the incident edge.
- int32 i1 = index;
- int32 i2 = i1 + 1 < count2 ? i1 + 1 : 0;
- c[0].v = b2Mul(xf2, vertices2[i1]);
- c[0].id.cf.indexA = (uint8)edge1;
- c[0].id.cf.indexB = (uint8)i1;
- c[0].id.cf.typeA = b2ContactFeature::e_face;
- c[0].id.cf.typeB = b2ContactFeature::e_vertex;
- c[1].v = b2Mul(xf2, vertices2[i2]);
- c[1].id.cf.indexA = (uint8)edge1;
- c[1].id.cf.indexB = (uint8)i2;
- c[1].id.cf.typeA = b2ContactFeature::e_face;
- c[1].id.cf.typeB = b2ContactFeature::e_vertex;
- }
- // Find edge normal of max separation on A - return if separating axis is found
- // Find edge normal of max separation on B - return if separation axis is found
- // Choose reference edge as min(minA, minB)
- // Find incident edge
- // Clip
- // The normal points from 1 to 2
- void b2CollidePolygons(b2Manifold* manifold,
- const b2PolygonShape* polyA, const b2Transform& xfA,
- const b2PolygonShape* polyB, const b2Transform& xfB) {
- manifold->pointCount = 0;
- float totalRadius = polyA->m_radius + polyB->m_radius;
- int32 edgeA = 0;
- float separationA = b2FindMaxSeparation(&edgeA, polyA, xfA, polyB, xfB);
- if (separationA > totalRadius)
- return;
- int32 edgeB = 0;
- float separationB = b2FindMaxSeparation(&edgeB, polyB, xfB, polyA, xfA);
- if (separationB > totalRadius)
- return;
- const b2PolygonShape* poly1; // reference polygon
- const b2PolygonShape* poly2; // incident polygon
- b2Transform xf1, xf2;
- int32 edge1; // reference edge
- uint8 flip;
- const float k_tol = 0.1f * b2_linearSlop;
- if (separationB > separationA + k_tol) {
- poly1 = polyB;
- poly2 = polyA;
- xf1 = xfB;
- xf2 = xfA;
- edge1 = edgeB;
- manifold->type = b2Manifold::e_faceB;
- flip = 1;
- } else {
- poly1 = polyA;
- poly2 = polyB;
- xf1 = xfA;
- xf2 = xfB;
- edge1 = edgeA;
- manifold->type = b2Manifold::e_faceA;
- flip = 0;
- }
- b2ClipVertex incidentEdge[2];
- b2FindIncidentEdge(incidentEdge, poly1, xf1, edge1, poly2, xf2);
- int32 count1 = poly1->m_count;
- const b2Vec2* vertices1 = poly1->m_vertices;
- int32 iv1 = edge1;
- int32 iv2 = edge1 + 1 < count1 ? edge1 + 1 : 0;
- b2Vec2 v11 = vertices1[iv1];
- b2Vec2 v12 = vertices1[iv2];
- b2Vec2 localTangent = v12 - v11;
- localTangent.Normalize();
- b2Vec2 localNormal = b2Cross(localTangent, 1.0f);
- b2Vec2 planePoint = 0.5f * (v11 + v12);
- b2Vec2 tangent = b2Mul(xf1.q, localTangent);
- b2Vec2 normal = b2Cross(tangent, 1.0f);
- v11 = b2Mul(xf1, v11);
- v12 = b2Mul(xf1, v12);
- // Face offset.
- float frontOffset = b2Dot(normal, v11);
- // Side offsets, extended by polytope skin thickness.
- float sideOffset1 = -b2Dot(tangent, v11) + totalRadius;
- float sideOffset2 = b2Dot(tangent, v12) + totalRadius;
- // Clip incident edge against extruded edge1 side edges.
- b2ClipVertex clipPoints1[2];
- b2ClipVertex clipPoints2[2];
- int np;
- // Clip to box side 1
- np = b2ClipSegmentToLine(clipPoints1, incidentEdge, -tangent, sideOffset1, iv1);
- if (np < 2)
- return;
- // Clip to negative box side 1
- np = b2ClipSegmentToLine(clipPoints2, clipPoints1, tangent, sideOffset2, iv2);
- if (np < 2) {
- return;
- }
- // Now clipPoints2 contains the clipped points.
- manifold->localNormal = localNormal;
- manifold->localPoint = planePoint;
- int32 pointCount = 0;
- for (int32 i = 0; i < b2_maxManifoldPoints; ++i) {
- float separation = b2Dot(normal, clipPoints2[i].v) - frontOffset;
- if (separation <= totalRadius) {
- b2ManifoldPoint* cp = manifold->points + pointCount;
- cp->localPoint = b2MulT(xf2, clipPoints2[i].v);
- cp->id = clipPoints2[i].id;
- if (flip) {
- // Swap features
- b2ContactFeature cf = cp->id.cf;
- cp->id.cf.indexA = cf.indexB;
- cp->id.cf.indexB = cf.indexA;
- cp->id.cf.typeA = cf.typeB;
- cp->id.cf.typeB = cf.typeA;
- }
- ++pointCount;
- }
- }
- manifold->pointCount = pointCount;
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_collision.h"
- //#include "box2d/b2_distance.h"
- void b2WorldManifold::Initialize(const b2Manifold* manifold,
- const b2Transform& xfA, float radiusA,
- const b2Transform& xfB, float radiusB) {
- if (manifold->pointCount == 0) {
- return;
- }
- switch (manifold->type) {
- case b2Manifold::e_circles:
- {
- normal.Set(1.0f, 0.0f);
- b2Vec2 pointA = b2Mul(xfA, manifold->localPoint);
- b2Vec2 pointB = b2Mul(xfB, manifold->points[0].localPoint);
- if (b2DistanceSquared(pointA, pointB) > b2_epsilon * b2_epsilon) {
- normal = pointB - pointA;
- normal.Normalize();
- }
- b2Vec2 cA = pointA + radiusA * normal;
- b2Vec2 cB = pointB - radiusB * normal;
- points[0] = 0.5f * (cA + cB);
- separations[0] = b2Dot(cB - cA, normal);
- }
- break;
- case b2Manifold::e_faceA:
- {
- normal = b2Mul(xfA.q, manifold->localNormal);
- b2Vec2 planePoint = b2Mul(xfA, manifold->localPoint);
- for (int32 i = 0; i < manifold->pointCount; ++i) {
- b2Vec2 clipPoint = b2Mul(xfB, manifold->points[i].localPoint);
- b2Vec2 cA = clipPoint + (radiusA - b2Dot(clipPoint - planePoint, normal)) * normal;
- b2Vec2 cB = clipPoint - radiusB * normal;
- points[i] = 0.5f * (cA + cB);
- separations[i] = b2Dot(cB - cA, normal);
- }
- }
- break;
- case b2Manifold::e_faceB:
- {
- normal = b2Mul(xfB.q, manifold->localNormal);
- b2Vec2 planePoint = b2Mul(xfB, manifold->localPoint);
- for (int32 i = 0; i < manifold->pointCount; ++i) {
- b2Vec2 clipPoint = b2Mul(xfA, manifold->points[i].localPoint);
- b2Vec2 cB = clipPoint + (radiusB - b2Dot(clipPoint - planePoint, normal)) * normal;
- b2Vec2 cA = clipPoint - radiusA * normal;
- points[i] = 0.5f * (cA + cB);
- separations[i] = b2Dot(cA - cB, normal);
- }
- // Ensure normal points from A to B.
- normal = -normal;
- }
- break;
- }
- }
- void b2GetPointStates(b2PointState state1[b2_maxManifoldPoints], b2PointState state2[b2_maxManifoldPoints],
- const b2Manifold* manifold1, const b2Manifold* manifold2) {
- for (int32 i = 0; i < b2_maxManifoldPoints; ++i) {
- state1[i] = b2_nullState;
- state2[i] = b2_nullState;
- }
- // Detect persists and removes.
- for (int32 i = 0; i < manifold1->pointCount; ++i) {
- b2ContactID id = manifold1->points[i].id;
- state1[i] = b2_removeState;
- for (int32 j = 0; j < manifold2->pointCount; ++j) {
- if (manifold2->points[j].id.key == id.key) {
- state1[i] = b2_persistState;
- break;
- }
- }
- }
- // Detect persists and adds.
- for (int32 i = 0; i < manifold2->pointCount; ++i) {
- b2ContactID id = manifold2->points[i].id;
- state2[i] = b2_addState;
- for (int32 j = 0; j < manifold1->pointCount; ++j) {
- if (manifold1->points[j].id.key == id.key) {
- state2[i] = b2_persistState;
- break;
- }
- }
- }
- }
- // From Real-time Collision Detection, p179.
- bool b2AABB::RayCast(b2RayCastOutput* output, const b2RayCastInput& input) const {
- float tmin = -b2_maxFloat;
- float tmax = b2_maxFloat;
- b2Vec2 p = input.p1;
- b2Vec2 d = input.p2 - input.p1;
- b2Vec2 absD = b2Abs(d);
- b2Vec2 normal;
- for (int32 i = 0; i < 2; ++i) {
- if (absD(i) < b2_epsilon) {
- // Parallel.
- if (p(i) < lowerBound(i) || upperBound(i) < p(i)) {
- return false;
- }
- } else {
- float inv_d = 1.0f / d(i);
- float t1 = (lowerBound(i) - p(i)) * inv_d;
- float t2 = (upperBound(i) - p(i)) * inv_d;
- // Sign of the normal vector.
- float s = -1.0f;
- if (t1 > t2) {
- b2Swap(t1, t2);
- s = 1.0f;
- }
- // Push the min up
- if (t1 > tmin) {
- normal.SetZero();
- normal(i) = s;
- tmin = t1;
- }
- // Pull the max down
- tmax = b2Min(tmax, t2);
- if (tmin > tmax) {
- return false;
- }
- }
- }
- // Does the ray start inside the box?
- // Does the ray intersect beyond the max fraction?
- if (tmin < 0.0f || input.maxFraction < tmin) {
- return false;
- }
- // Intersection.
- output->fraction = tmin;
- output->normal = normal;
- return true;
- }
- // Sutherland-Hodgman clipping.
- int32 b2ClipSegmentToLine(b2ClipVertex vOut[2], const b2ClipVertex vIn[2],
- const b2Vec2& normal, float offset, int32 vertexIndexA) {
- // Start with no output points
- int32 count = 0;
- // Calculate the distance of end points to the line
- float distance0 = b2Dot(normal, vIn[0].v) - offset;
- float distance1 = b2Dot(normal, vIn[1].v) - offset;
- // If the points are behind the plane
- if (distance0 <= 0.0f) vOut[count++] = vIn[0];
- if (distance1 <= 0.0f) vOut[count++] = vIn[1];
- // If the points are on different sides of the plane
- if (distance0 * distance1 < 0.0f) {
- // Find intersection point of edge and plane
- float interp = distance0 / (distance0 - distance1);
- vOut[count].v = vIn[0].v + interp * (vIn[1].v - vIn[0].v);
- // VertexA is hitting edgeB.
- vOut[count].id.cf.indexA = static_cast<uint8>(vertexIndexA);
- vOut[count].id.cf.indexB = vIn[0].id.cf.indexB;
- vOut[count].id.cf.typeA = b2ContactFeature::e_vertex;
- vOut[count].id.cf.typeB = b2ContactFeature::e_face;
- ++count;
- b2Assert(count == 2);
- }
- return count;
- }
- bool b2TestOverlap(const b2Shape* shapeA, int32 indexA,
- const b2Shape* shapeB, int32 indexB,
- const b2Transform& xfA, const b2Transform& xfB) {
- b2DistanceInput input;
- input.proxyA.Set(shapeA, indexA);
- input.proxyB.Set(shapeB, indexB);
- input.transformA = xfA;
- input.transformB = xfB;
- input.useRadii = true;
- b2SimplexCache cache;
- cache.count = 0;
- b2DistanceOutput output;
- b2Distance(&output, &cache, &input);
- return output.distance < 10.0f * b2_epsilon;
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_circle_shape.h"
- //#include "box2d/b2_distance.h"
- //#include "box2d/b2_edge_shape.h"
- //#include "box2d/b2_chain_shape.h"
- //#include "box2d/b2_polygon_shape.h"
- // GJK using Voronoi regions (Christer Ericson) and Barycentric coordinates.
- B2_API int32 b2_gjkCalls, b2_gjkIters, b2_gjkMaxIters;
- void b2DistanceProxy::Set(const b2Shape* shape, int32 index) {
- switch (shape->GetType()) {
- case b2Shape::e_circle:
- {
- const b2CircleShape* circle = static_cast<const b2CircleShape*>(shape);
- m_vertices = &circle->m_p;
- m_count = 1;
- m_radius = circle->m_radius;
- }
- break;
- case b2Shape::e_polygon:
- {
- const b2PolygonShape* polygon = static_cast<const b2PolygonShape*>(shape);
- m_vertices = polygon->m_vertices;
- m_count = polygon->m_count;
- m_radius = polygon->m_radius;
- }
- break;
- case b2Shape::e_chain:
- {
- const b2ChainShape* chain = static_cast<const b2ChainShape*>(shape);
- b2Assert(0 <= index && index < chain->m_count);
- m_buffer[0] = chain->m_vertices[index];
- if (index + 1 < chain->m_count) {
- m_buffer[1] = chain->m_vertices[index + 1];
- } else {
- m_buffer[1] = chain->m_vertices[0];
- }
- m_vertices = m_buffer;
- m_count = 2;
- m_radius = chain->m_radius;
- }
- break;
- case b2Shape::e_edge:
- {
- const b2EdgeShape* edge = static_cast<const b2EdgeShape*>(shape);
- m_vertices = &edge->m_vertex1;
- m_count = 2;
- m_radius = edge->m_radius;
- }
- break;
- default:
- b2Assert(false);
- }
- }
- void b2DistanceProxy::Set(const b2Vec2* vertices, int32 count, float radius) {
- m_vertices = vertices;
- m_count = count;
- m_radius = radius;
- }
- struct b2SimplexVertex {
- b2Vec2 wA; // support point in proxyA
- b2Vec2 wB; // support point in proxyB
- b2Vec2 w; // wB - wA
- float a; // barycentric coordinate for closest point
- int32 indexA; // wA index
- int32 indexB; // wB index
- };
- struct b2Simplex {
- void ReadCache(const b2SimplexCache* cache,
- const b2DistanceProxy* proxyA, const b2Transform& transformA,
- const b2DistanceProxy* proxyB, const b2Transform& transformB) {
- b2Assert(cache->count <= 3);
- // Copy data from cache.
- m_count = cache->count;
- b2SimplexVertex* vertices = &m_v1;
- for (int32 i = 0; i < m_count; ++i) {
- b2SimplexVertex* v = vertices + i;
- v->indexA = cache->indexA[i];
- v->indexB = cache->indexB[i];
- b2Vec2 wALocal = proxyA->GetVertex(v->indexA);
- b2Vec2 wBLocal = proxyB->GetVertex(v->indexB);
- v->wA = b2Mul(transformA, wALocal);
- v->wB = b2Mul(transformB, wBLocal);
- v->w = v->wB - v->wA;
- v->a = 0.0f;
- }
- // Compute the new simplex metric, if it is substantially different than
- // old metric then flush the simplex.
- if (m_count > 1) {
- float metric1 = cache->metric;
- float metric2 = GetMetric();
- if (metric2 < 0.5f * metric1 || 2.0f * metric1 < metric2 || metric2 < b2_epsilon) {
- // Reset the simplex.
- m_count = 0;
- }
- }
- // If the cache is empty or invalid ...
- if (m_count == 0) {
- b2SimplexVertex* v = vertices + 0;
- v->indexA = 0;
- v->indexB = 0;
- b2Vec2 wALocal = proxyA->GetVertex(0);
- b2Vec2 wBLocal = proxyB->GetVertex(0);
- v->wA = b2Mul(transformA, wALocal);
- v->wB = b2Mul(transformB, wBLocal);
- v->w = v->wB - v->wA;
- v->a = 1.0f;
- m_count = 1;
- }
- }
- void WriteCache(b2SimplexCache* cache) const {
- cache->metric = GetMetric();
- cache->count = uint16(m_count);
- const b2SimplexVertex* vertices = &m_v1;
- for (int32 i = 0; i < m_count; ++i) {
- cache->indexA[i] = uint8(vertices[i].indexA);
- cache->indexB[i] = uint8(vertices[i].indexB);
- }
- }
- b2Vec2 GetSearchDirection() const {
- switch (m_count) {
- case 1:
- return -m_v1.w;
- case 2:
- {
- b2Vec2 e12 = m_v2.w - m_v1.w;
- float sgn = b2Cross(e12, -m_v1.w);
- if (sgn > 0.0f) {
- // Origin is left of e12.
- return b2Cross(1.0f, e12);
- } else {
- // Origin is right of e12.
- return b2Cross(e12, 1.0f);
- }
- }
- default:
- b2Assert(false);
- return b2Vec2_zero;
- }
- }
- b2Vec2 GetClosestPoint() const {
- switch (m_count) {
- case 0:
- b2Assert(false);
- return b2Vec2_zero;
- case 1:
- return m_v1.w;
- case 2:
- return m_v1.a * m_v1.w + m_v2.a * m_v2.w;
- case 3:
- return b2Vec2_zero;
- default:
- b2Assert(false);
- return b2Vec2_zero;
- }
- }
- void GetWitnessPoints(b2Vec2* pA, b2Vec2* pB) const {
- switch (m_count) {
- case 0:
- b2Assert(false);
- break;
- case 1:
- *pA = m_v1.wA;
- *pB = m_v1.wB;
- break;
- case 2:
- *pA = m_v1.a * m_v1.wA + m_v2.a * m_v2.wA;
- *pB = m_v1.a * m_v1.wB + m_v2.a * m_v2.wB;
- break;
- case 3:
- *pA = m_v1.a * m_v1.wA + m_v2.a * m_v2.wA + m_v3.a * m_v3.wA;
- *pB = *pA;
- break;
- default:
- b2Assert(false);
- break;
- }
- }
- float GetMetric() const {
- switch (m_count) {
- case 0:
- b2Assert(false);
- return 0.0f;
- case 1:
- return 0.0f;
- case 2:
- return b2Distance(m_v1.w, m_v2.w);
- case 3:
- return b2Cross(m_v2.w - m_v1.w, m_v3.w - m_v1.w);
- default:
- b2Assert(false);
- return 0.0f;
- }
- }
- void Solve2();
- void Solve3();
- b2SimplexVertex m_v1, m_v2, m_v3;
- int32 m_count;
- };
- // Solve a line segment using barycentric coordinates.
- //
- // p = a1 * w1 + a2 * w2
- // a1 + a2 = 1
- //
- // The vector from the origin to the closest point on the line is
- // perpendicular to the line.
- // e12 = w2 - w1
- // dot(p, e) = 0
- // a1 * dot(w1, e) + a2 * dot(w2, e) = 0
- //
- // 2-by-2 linear system
- // [1 1 ][a1] = [1]
- // [w1.e12 w2.e12][a2] = [0]
- //
- // Define
- // d12_1 = dot(w2, e12)
- // d12_2 = -dot(w1, e12)
- // d12 = d12_1 + d12_2
- //
- // Solution
- // a1 = d12_1 / d12
- // a2 = d12_2 / d12
- void b2Simplex::Solve2() {
- b2Vec2 w1 = m_v1.w;
- b2Vec2 w2 = m_v2.w;
- b2Vec2 e12 = w2 - w1;
- // w1 region
- float d12_2 = -b2Dot(w1, e12);
- if (d12_2 <= 0.0f) {
- // a2 <= 0, so we clamp it to 0
- m_v1.a = 1.0f;
- m_count = 1;
- return;
- }
- // w2 region
- float d12_1 = b2Dot(w2, e12);
- if (d12_1 <= 0.0f) {
- // a1 <= 0, so we clamp it to 0
- m_v2.a = 1.0f;
- m_count = 1;
- m_v1 = m_v2;
- return;
- }
- // Must be in e12 region.
- float inv_d12 = 1.0f / (d12_1 + d12_2);
- m_v1.a = d12_1 * inv_d12;
- m_v2.a = d12_2 * inv_d12;
- m_count = 2;
- }
- // Possible regions:
- // - points[2]
- // - edge points[0]-points[2]
- // - edge points[1]-points[2]
- // - inside the triangle
- void b2Simplex::Solve3() {
- b2Vec2 w1 = m_v1.w;
- b2Vec2 w2 = m_v2.w;
- b2Vec2 w3 = m_v3.w;
- // Edge12
- // [1 1 ][a1] = [1]
- // [w1.e12 w2.e12][a2] = [0]
- // a3 = 0
- b2Vec2 e12 = w2 - w1;
- float w1e12 = b2Dot(w1, e12);
- float w2e12 = b2Dot(w2, e12);
- float d12_1 = w2e12;
- float d12_2 = -w1e12;
- // Edge13
- // [1 1 ][a1] = [1]
- // [w1.e13 w3.e13][a3] = [0]
- // a2 = 0
- b2Vec2 e13 = w3 - w1;
- float w1e13 = b2Dot(w1, e13);
- float w3e13 = b2Dot(w3, e13);
- float d13_1 = w3e13;
- float d13_2 = -w1e13;
- // Edge23
- // [1 1 ][a2] = [1]
- // [w2.e23 w3.e23][a3] = [0]
- // a1 = 0
- b2Vec2 e23 = w3 - w2;
- float w2e23 = b2Dot(w2, e23);
- float w3e23 = b2Dot(w3, e23);
- float d23_1 = w3e23;
- float d23_2 = -w2e23;
- // Triangle123
- float n123 = b2Cross(e12, e13);
- float d123_1 = n123 * b2Cross(w2, w3);
- float d123_2 = n123 * b2Cross(w3, w1);
- float d123_3 = n123 * b2Cross(w1, w2);
- // w1 region
- if (d12_2 <= 0.0f && d13_2 <= 0.0f) {
- m_v1.a = 1.0f;
- m_count = 1;
- return;
- }
- // e12
- if (d12_1 > 0.0f && d12_2 > 0.0f && d123_3 <= 0.0f) {
- float inv_d12 = 1.0f / (d12_1 + d12_2);
- m_v1.a = d12_1 * inv_d12;
- m_v2.a = d12_2 * inv_d12;
- m_count = 2;
- return;
- }
- // e13
- if (d13_1 > 0.0f && d13_2 > 0.0f && d123_2 <= 0.0f) {
- float inv_d13 = 1.0f / (d13_1 + d13_2);
- m_v1.a = d13_1 * inv_d13;
- m_v3.a = d13_2 * inv_d13;
- m_count = 2;
- m_v2 = m_v3;
- return;
- }
- // w2 region
- if (d12_1 <= 0.0f && d23_2 <= 0.0f) {
- m_v2.a = 1.0f;
- m_count = 1;
- m_v1 = m_v2;
- return;
- }
- // w3 region
- if (d13_1 <= 0.0f && d23_1 <= 0.0f) {
- m_v3.a = 1.0f;
- m_count = 1;
- m_v1 = m_v3;
- return;
- }
- // e23
- if (d23_1 > 0.0f && d23_2 > 0.0f && d123_1 <= 0.0f) {
- float inv_d23 = 1.0f / (d23_1 + d23_2);
- m_v2.a = d23_1 * inv_d23;
- m_v3.a = d23_2 * inv_d23;
- m_count = 2;
- m_v1 = m_v3;
- return;
- }
- // Must be in triangle123
- float inv_d123 = 1.0f / (d123_1 + d123_2 + d123_3);
- m_v1.a = d123_1 * inv_d123;
- m_v2.a = d123_2 * inv_d123;
- m_v3.a = d123_3 * inv_d123;
- m_count = 3;
- }
- void b2Distance(b2DistanceOutput* output,
- b2SimplexCache* cache,
- const b2DistanceInput* input) {
- ++b2_gjkCalls;
- const b2DistanceProxy* proxyA = &input->proxyA;
- const b2DistanceProxy* proxyB = &input->proxyB;
- b2Transform transformA = input->transformA;
- b2Transform transformB = input->transformB;
- // Initialize the simplex.
- b2Simplex simplex;
- simplex.ReadCache(cache, proxyA, transformA, proxyB, transformB);
- // Get simplex vertices as an array.
- b2SimplexVertex* vertices = &simplex.m_v1;
- const int32 k_maxIters = 20;
- // These store the vertices of the last simplex so that we
- // can check for duplicates and prevent cycling.
- int32 saveA[3], saveB[3];
- int32 saveCount = 0;
- // Main iteration loop.
- int32 iter = 0;
- while (iter < k_maxIters) {
- // Copy simplex so we can identify duplicates.
- saveCount = simplex.m_count;
- for (int32 i = 0; i < saveCount; ++i) {
- saveA[i] = vertices[i].indexA;
- saveB[i] = vertices[i].indexB;
- }
- switch (simplex.m_count) {
- case 1:
- break;
- case 2:
- simplex.Solve2();
- break;
- case 3:
- simplex.Solve3();
- break;
- default:
- b2Assert(false);
- }
- // If we have 3 points, then the origin is in the corresponding triangle.
- if (simplex.m_count == 3) {
- break;
- }
- // Get search direction.
- b2Vec2 d = simplex.GetSearchDirection();
- // Ensure the search direction is numerically fit.
- if (d.LengthSquared() < b2_epsilon * b2_epsilon) {
- // The origin is probably contained by a line segment
- // or triangle. Thus the shapes are overlapped.
- // We can't return zero here even though there may be overlap.
- // In case the simplex is a point, segment, or triangle it is difficult
- // to determine if the origin is contained in the CSO or very close to it.
- break;
- }
- // Compute a tentative new simplex vertex using support points.
- b2SimplexVertex* vertex = vertices + simplex.m_count;
- vertex->indexA = proxyA->GetSupport(b2MulT(transformA.q, -d));
- vertex->wA = b2Mul(transformA, proxyA->GetVertex(vertex->indexA));
- vertex->indexB = proxyB->GetSupport(b2MulT(transformB.q, d));
- vertex->wB = b2Mul(transformB, proxyB->GetVertex(vertex->indexB));
- vertex->w = vertex->wB - vertex->wA;
- // Iteration count is equated to the number of support point calls.
- ++iter;
- ++b2_gjkIters;
- // Check for duplicate support points. This is the main termination criteria.
- bool duplicate = false;
- for (int32 i = 0; i < saveCount; ++i) {
- if (vertex->indexA == saveA[i] && vertex->indexB == saveB[i]) {
- duplicate = true;
- break;
- }
- }
- // If we found a duplicate support point we must exit to avoid cycling.
- if (duplicate) {
- break;
- }
- // New vertex is ok and needed.
- ++simplex.m_count;
- }
- b2_gjkMaxIters = b2Max(b2_gjkMaxIters, iter);
- // Prepare output.
- simplex.GetWitnessPoints(&output->pointA, &output->pointB);
- output->distance = b2Distance(output->pointA, output->pointB);
- output->iterations = iter;
- // Cache the simplex.
- simplex.WriteCache(cache);
- // Apply radii if requested.
- if (input->useRadii) {
- float rA = proxyA->m_radius;
- float rB = proxyB->m_radius;
- if (output->distance > rA + rB && output->distance > b2_epsilon) {
- // Shapes are still no overlapped.
- // Move the witness points to the outer surface.
- output->distance -= rA + rB;
- b2Vec2 normal = output->pointB - output->pointA;
- normal.Normalize();
- output->pointA += rA * normal;
- output->pointB -= rB * normal;
- } else {
- // Shapes are overlapped when radii are considered.
- // Move the witness points to the middle.
- b2Vec2 p = 0.5f * (output->pointA + output->pointB);
- output->pointA = p;
- output->pointB = p;
- output->distance = 0.0f;
- }
- }
- }
- // GJK-raycast
- // Algorithm by Gino van den Bergen.
- // "Smooth Mesh Contacts with GJK" in Game Physics Pearls. 2010
- bool b2ShapeCast(b2ShapeCastOutput* output, const b2ShapeCastInput* input) {
- output->iterations = 0;
- output->lambda = 1.0f;
- output->normal.SetZero();
- output->point.SetZero();
- const b2DistanceProxy* proxyA = &input->proxyA;
- const b2DistanceProxy* proxyB = &input->proxyB;
- float radiusA = b2Max(proxyA->m_radius, b2_polygonRadius);
- float radiusB = b2Max(proxyB->m_radius, b2_polygonRadius);
- float radius = radiusA + radiusB;
- b2Transform xfA = input->transformA;
- b2Transform xfB = input->transformB;
- b2Vec2 r = input->translationB;
- b2Vec2 n(0.0f, 0.0f);
- float lambda = 0.0f;
- // Initial simplex
- b2Simplex simplex;
- simplex.m_count = 0;
- // Get simplex vertices as an array.
- b2SimplexVertex* vertices = &simplex.m_v1;
- // Get support point in -r direction
- int32 indexA = proxyA->GetSupport(b2MulT(xfA.q, -r));
- b2Vec2 wA = b2Mul(xfA, proxyA->GetVertex(indexA));
- int32 indexB = proxyB->GetSupport(b2MulT(xfB.q, r));
- b2Vec2 wB = b2Mul(xfB, proxyB->GetVertex(indexB));
- b2Vec2 v = wA - wB;
- // Sigma is the target distance between polygons
- float sigma = b2Max(b2_polygonRadius, radius - b2_polygonRadius);
- const float tolerance = 0.5f * b2_linearSlop;
- // Main iteration loop.
- const int32 k_maxIters = 20;
- int32 iter = 0;
- while (iter < k_maxIters && v.Length() - sigma > tolerance) {
- b2Assert(simplex.m_count < 3);
- output->iterations += 1;
- // Support in direction -v (A - B)
- indexA = proxyA->GetSupport(b2MulT(xfA.q, -v));
- wA = b2Mul(xfA, proxyA->GetVertex(indexA));
- indexB = proxyB->GetSupport(b2MulT(xfB.q, v));
- wB = b2Mul(xfB, proxyB->GetVertex(indexB));
- b2Vec2 p = wA - wB;
- // -v is a normal at p
- v.Normalize();
- // Intersect ray with plane
- float vp = b2Dot(v, p);
- float vr = b2Dot(v, r);
- if (vp - sigma > lambda * vr) {
- if (vr <= 0.0f) {
- return false;
- }
- lambda = (vp - sigma) / vr;
- if (lambda > 1.0f) {
- return false;
- }
- n = -v;
- simplex.m_count = 0;
- }
- // Reverse simplex since it works with B - A.
- // Shift by lambda * r because we want the closest point to the current clip point.
- // Note that the support point p is not shifted because we want the plane equation
- // to be formed in unshifted space.
- b2SimplexVertex* vertex = vertices + simplex.m_count;
- vertex->indexA = indexB;
- vertex->wA = wB + lambda * r;
- vertex->indexB = indexA;
- vertex->wB = wA;
- vertex->w = vertex->wB - vertex->wA;
- vertex->a = 1.0f;
- simplex.m_count += 1;
- switch (simplex.m_count) {
- case 1:
- break;
- case 2:
- simplex.Solve2();
- break;
- case 3:
- simplex.Solve3();
- break;
- default:
- b2Assert(false);
- }
- // If we have 3 points, then the origin is in the corresponding triangle.
- if (simplex.m_count == 3) {
- // Overlap
- return false;
- }
- // Get search direction.
- v = simplex.GetClosestPoint();
- // Iteration count is equated to the number of support point calls.
- ++iter;
- }
- if (iter == 0) {
- // Initial overlap
- return false;
- }
- // Prepare output.
- b2Vec2 pointA, pointB;
- simplex.GetWitnessPoints(&pointB, &pointA);
- if (v.LengthSquared() > 0.0f) {
- n = -v;
- n.Normalize();
- }
- output->point = pointA + radiusA * n;
- output->normal = n;
- output->lambda = lambda;
- output->iterations = iter;
- return true;
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_dynamic_tree.h"
- #include <string.h>
- b2DynamicTree::b2DynamicTree() {
- m_root = b2_nullNode;
- m_nodeCapacity = 16;
- m_nodeCount = 0;
- m_nodes = (b2TreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2TreeNode));
- memset(m_nodes, 0, m_nodeCapacity * sizeof(b2TreeNode));
- // Build a linked list for the free list.
- for (int32 i = 0; i < m_nodeCapacity - 1; ++i) {
- m_nodes[i].next = i + 1;
- m_nodes[i].height = -1;
- }
- m_nodes[m_nodeCapacity - 1].next = b2_nullNode;
- m_nodes[m_nodeCapacity - 1].height = -1;
- m_freeList = 0;
- m_insertionCount = 0;
- }
- b2DynamicTree::~b2DynamicTree() {
- // This frees the entire tree in one shot.
- b2Free(m_nodes);
- }
- // Allocate a node from the pool. Grow the pool if necessary.
- int32 b2DynamicTree::AllocateNode() {
- // Expand the node pool as needed.
- if (m_freeList == b2_nullNode) {
- b2Assert(m_nodeCount == m_nodeCapacity);
- // The free list is empty. Rebuild a bigger pool.
- b2TreeNode* oldNodes = m_nodes;
- m_nodeCapacity *= 2;
- m_nodes = (b2TreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2TreeNode));
- memcpy(m_nodes, oldNodes, m_nodeCount * sizeof(b2TreeNode));
- b2Free(oldNodes);
- // Build a linked list for the free list. The parent
- // pointer becomes the "next" pointer.
- for (int32 i = m_nodeCount; i < m_nodeCapacity - 1; ++i) {
- m_nodes[i].next = i + 1;
- m_nodes[i].height = -1;
- }
- m_nodes[m_nodeCapacity - 1].next = b2_nullNode;
- m_nodes[m_nodeCapacity - 1].height = -1;
- m_freeList = m_nodeCount;
- }
- // Peel a node off the free list.
- int32 nodeId = m_freeList;
- m_freeList = m_nodes[nodeId].next;
- m_nodes[nodeId].parent = b2_nullNode;
- m_nodes[nodeId].child1 = b2_nullNode;
- m_nodes[nodeId].child2 = b2_nullNode;
- m_nodes[nodeId].height = 0;
- m_nodes[nodeId].userData = nullptr;
- m_nodes[nodeId].moved = false;
- ++m_nodeCount;
- return nodeId;
- }
- // Return a node to the pool.
- void b2DynamicTree::FreeNode(int32 nodeId) {
- b2Assert(0 <= nodeId && nodeId < m_nodeCapacity);
- b2Assert(0 < m_nodeCount);
- m_nodes[nodeId].next = m_freeList;
- m_nodes[nodeId].height = -1;
- m_freeList = nodeId;
- --m_nodeCount;
- }
- // Create a proxy in the tree as a leaf node. We return the index
- // of the node instead of a pointer so that we can grow
- // the node pool.
- int32 b2DynamicTree::CreateProxy(const b2AABB& aabb, void* userData) {
- int32 proxyId = AllocateNode();
- // Fatten the aabb.
- b2Vec2 r(b2_aabbExtension, b2_aabbExtension);
- m_nodes[proxyId].aabb.lowerBound = aabb.lowerBound - r;
- m_nodes[proxyId].aabb.upperBound = aabb.upperBound + r;
- m_nodes[proxyId].userData = userData;
- m_nodes[proxyId].height = 0;
- m_nodes[proxyId].moved = true;
- InsertLeaf(proxyId);
- return proxyId;
- }
- void b2DynamicTree::DestroyProxy(int32 proxyId) {
- b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
- b2Assert(m_nodes[proxyId].IsLeaf());
- RemoveLeaf(proxyId);
- FreeNode(proxyId);
- }
- bool b2DynamicTree::MoveProxy(int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement) {
- b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
- b2Assert(m_nodes[proxyId].IsLeaf());
- // Extend AABB
- b2AABB fatAABB;
- b2Vec2 r(b2_aabbExtension, b2_aabbExtension);
- fatAABB.lowerBound = aabb.lowerBound - r;
- fatAABB.upperBound = aabb.upperBound + r;
- // Predict AABB movement
- b2Vec2 d = b2_aabbMultiplier * displacement;
- if (d.x < 0.0f) {
- fatAABB.lowerBound.x += d.x;
- } else {
- fatAABB.upperBound.x += d.x;
- }
- if (d.y < 0.0f) {
- fatAABB.lowerBound.y += d.y;
- } else {
- fatAABB.upperBound.y += d.y;
- }
- const b2AABB& treeAABB = m_nodes[proxyId].aabb;
- if (treeAABB.Contains(aabb)) {
- // The tree AABB still contains the object, but it might be too large.
- // Perhaps the object was moving fast but has since gone to sleep.
- // The huge AABB is larger than the new fat AABB.
- b2AABB hugeAABB;
- hugeAABB.lowerBound = fatAABB.lowerBound - 4.0f * r;
- hugeAABB.upperBound = fatAABB.upperBound + 4.0f * r;
- if (hugeAABB.Contains(treeAABB)) {
- // The tree AABB contains the object AABB and the tree AABB is
- // not too large. No tree update needed.
- return false;
- }
- // Otherwise the tree AABB is huge and needs to be shrunk
- }
- RemoveLeaf(proxyId);
- m_nodes[proxyId].aabb = fatAABB;
- InsertLeaf(proxyId);
- m_nodes[proxyId].moved = true;
- return true;
- }
- void b2DynamicTree::InsertLeaf(int32 leaf) {
- ++m_insertionCount;
- if (m_root == b2_nullNode) {
- m_root = leaf;
- m_nodes[m_root].parent = b2_nullNode;
- return;
- }
- // Find the best sibling for this node
- b2AABB leafAABB = m_nodes[leaf].aabb;
- int32 index = m_root;
- while (m_nodes[index].IsLeaf() == false) {
- int32 child1 = m_nodes[index].child1;
- int32 child2 = m_nodes[index].child2;
- float area = m_nodes[index].aabb.GetPerimeter();
- b2AABB combinedAABB;
- combinedAABB.Combine(m_nodes[index].aabb, leafAABB);
- float combinedArea = combinedAABB.GetPerimeter();
- // Cost of creating a new parent for this node and the new leaf
- float cost = 2.0f * combinedArea;
- // Minimum cost of pushing the leaf further down the tree
- float inheritanceCost = 2.0f * (combinedArea - area);
- // Cost of descending into child1
- float cost1;
- if (m_nodes[child1].IsLeaf()) {
- b2AABB aabb;
- aabb.Combine(leafAABB, m_nodes[child1].aabb);
- cost1 = aabb.GetPerimeter() + inheritanceCost;
- } else {
- b2AABB aabb;
- aabb.Combine(leafAABB, m_nodes[child1].aabb);
- float oldArea = m_nodes[child1].aabb.GetPerimeter();
- float newArea = aabb.GetPerimeter();
- cost1 = (newArea - oldArea) + inheritanceCost;
- }
- // Cost of descending into child2
- float cost2;
- if (m_nodes[child2].IsLeaf()) {
- b2AABB aabb;
- aabb.Combine(leafAABB, m_nodes[child2].aabb);
- cost2 = aabb.GetPerimeter() + inheritanceCost;
- } else {
- b2AABB aabb;
- aabb.Combine(leafAABB, m_nodes[child2].aabb);
- float oldArea = m_nodes[child2].aabb.GetPerimeter();
- float newArea = aabb.GetPerimeter();
- cost2 = newArea - oldArea + inheritanceCost;
- }
- // Descend according to the minimum cost.
- if (cost < cost1 && cost < cost2) {
- break;
- }
- // Descend
- if (cost1 < cost2) {
- index = child1;
- } else {
- index = child2;
- }
- }
- int32 sibling = index;
- // Create a new parent.
- int32 oldParent = m_nodes[sibling].parent;
- int32 newParent = AllocateNode();
- m_nodes[newParent].parent = oldParent;
- m_nodes[newParent].userData = nullptr;
- m_nodes[newParent].aabb.Combine(leafAABB, m_nodes[sibling].aabb);
- m_nodes[newParent].height = m_nodes[sibling].height + 1;
- if (oldParent != b2_nullNode) {
- // The sibling was not the root.
- if (m_nodes[oldParent].child1 == sibling) {
- m_nodes[oldParent].child1 = newParent;
- } else {
- m_nodes[oldParent].child2 = newParent;
- }
- m_nodes[newParent].child1 = sibling;
- m_nodes[newParent].child2 = leaf;
- m_nodes[sibling].parent = newParent;
- m_nodes[leaf].parent = newParent;
- } else {
- // The sibling was the root.
- m_nodes[newParent].child1 = sibling;
- m_nodes[newParent].child2 = leaf;
- m_nodes[sibling].parent = newParent;
- m_nodes[leaf].parent = newParent;
- m_root = newParent;
- }
- // Walk back up the tree fixing heights and AABBs
- index = m_nodes[leaf].parent;
- while (index != b2_nullNode) {
- index = Balance(index);
- int32 child1 = m_nodes[index].child1;
- int32 child2 = m_nodes[index].child2;
- b2Assert(child1 != b2_nullNode);
- b2Assert(child2 != b2_nullNode);
- m_nodes[index].height = 1 + b2Max(m_nodes[child1].height, m_nodes[child2].height);
- m_nodes[index].aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb);
- index = m_nodes[index].parent;
- }
- //Validate();
- }
- void b2DynamicTree::RemoveLeaf(int32 leaf) {
- if (leaf == m_root) {
- m_root = b2_nullNode;
- return;
- }
- int32 parent = m_nodes[leaf].parent;
- int32 grandParent = m_nodes[parent].parent;
- int32 sibling;
- if (m_nodes[parent].child1 == leaf) {
- sibling = m_nodes[parent].child2;
- } else {
- sibling = m_nodes[parent].child1;
- }
- if (grandParent != b2_nullNode) {
- // Destroy parent and connect sibling to grandParent.
- if (m_nodes[grandParent].child1 == parent) {
- m_nodes[grandParent].child1 = sibling;
- } else {
- m_nodes[grandParent].child2 = sibling;
- }
- m_nodes[sibling].parent = grandParent;
- FreeNode(parent);
- // Adjust ancestor bounds.
- int32 index = grandParent;
- while (index != b2_nullNode) {
- index = Balance(index);
- int32 child1 = m_nodes[index].child1;
- int32 child2 = m_nodes[index].child2;
- m_nodes[index].aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb);
- m_nodes[index].height = 1 + b2Max(m_nodes[child1].height, m_nodes[child2].height);
- index = m_nodes[index].parent;
- }
- } else {
- m_root = sibling;
- m_nodes[sibling].parent = b2_nullNode;
- FreeNode(parent);
- }
- //Validate();
- }
- // Perform a left or right rotation if node A is imbalanced.
- // Returns the new root index.
- int32 b2DynamicTree::Balance(int32 iA) {
- b2Assert(iA != b2_nullNode);
- b2TreeNode* A = m_nodes + iA;
- if (A->IsLeaf() || A->height < 2) {
- return iA;
- }
- int32 iB = A->child1;
- int32 iC = A->child2;
- b2Assert(0 <= iB && iB < m_nodeCapacity);
- b2Assert(0 <= iC && iC < m_nodeCapacity);
- b2TreeNode* B = m_nodes + iB;
- b2TreeNode* C = m_nodes + iC;
- int32 balance = C->height - B->height;
- // Rotate C up
- if (balance > 1) {
- int32 iF = C->child1;
- int32 iG = C->child2;
- b2TreeNode* F = m_nodes + iF;
- b2TreeNode* G = m_nodes + iG;
- b2Assert(0 <= iF && iF < m_nodeCapacity);
- b2Assert(0 <= iG && iG < m_nodeCapacity);
- // Swap A and C
- C->child1 = iA;
- C->parent = A->parent;
- A->parent = iC;
- // A's old parent should point to C
- if (C->parent != b2_nullNode) {
- if (m_nodes[C->parent].child1 == iA) {
- m_nodes[C->parent].child1 = iC;
- } else {
- b2Assert(m_nodes[C->parent].child2 == iA);
- m_nodes[C->parent].child2 = iC;
- }
- } else {
- m_root = iC;
- }
- // Rotate
- if (F->height > G->height) {
- C->child2 = iF;
- A->child2 = iG;
- G->parent = iA;
- A->aabb.Combine(B->aabb, G->aabb);
- C->aabb.Combine(A->aabb, F->aabb);
- A->height = 1 + b2Max(B->height, G->height);
- C->height = 1 + b2Max(A->height, F->height);
- } else {
- C->child2 = iG;
- A->child2 = iF;
- F->parent = iA;
- A->aabb.Combine(B->aabb, F->aabb);
- C->aabb.Combine(A->aabb, G->aabb);
- A->height = 1 + b2Max(B->height, F->height);
- C->height = 1 + b2Max(A->height, G->height);
- }
- return iC;
- }
- // Rotate B up
- if (balance < -1) {
- int32 iD = B->child1;
- int32 iE = B->child2;
- b2TreeNode* D = m_nodes + iD;
- b2TreeNode* E = m_nodes + iE;
- b2Assert(0 <= iD && iD < m_nodeCapacity);
- b2Assert(0 <= iE && iE < m_nodeCapacity);
- // Swap A and B
- B->child1 = iA;
- B->parent = A->parent;
- A->parent = iB;
- // A's old parent should point to B
- if (B->parent != b2_nullNode) {
- if (m_nodes[B->parent].child1 == iA) {
- m_nodes[B->parent].child1 = iB;
- } else {
- b2Assert(m_nodes[B->parent].child2 == iA);
- m_nodes[B->parent].child2 = iB;
- }
- } else {
- m_root = iB;
- }
- // Rotate
- if (D->height > E->height) {
- B->child2 = iD;
- A->child1 = iE;
- E->parent = iA;
- A->aabb.Combine(C->aabb, E->aabb);
- B->aabb.Combine(A->aabb, D->aabb);
- A->height = 1 + b2Max(C->height, E->height);
- B->height = 1 + b2Max(A->height, D->height);
- } else {
- B->child2 = iE;
- A->child1 = iD;
- D->parent = iA;
- A->aabb.Combine(C->aabb, D->aabb);
- B->aabb.Combine(A->aabb, E->aabb);
- A->height = 1 + b2Max(C->height, D->height);
- B->height = 1 + b2Max(A->height, E->height);
- }
- return iB;
- }
- return iA;
- }
- int32 b2DynamicTree::GetHeight() const {
- if (m_root == b2_nullNode) {
- return 0;
- }
- return m_nodes[m_root].height;
- }
- //
- float b2DynamicTree::GetAreaRatio() const {
- if (m_root == b2_nullNode) {
- return 0.0f;
- }
- const b2TreeNode* root = m_nodes + m_root;
- float rootArea = root->aabb.GetPerimeter();
- float totalArea = 0.0f;
- for (int32 i = 0; i < m_nodeCapacity; ++i) {
- const b2TreeNode* node = m_nodes + i;
- if (node->height < 0) {
- // Free node in pool
- continue;
- }
- totalArea += node->aabb.GetPerimeter();
- }
- return totalArea / rootArea;
- }
- // Compute the height of a sub-tree.
- int32 b2DynamicTree::ComputeHeight(int32 nodeId) const {
- b2Assert(0 <= nodeId && nodeId < m_nodeCapacity);
- b2TreeNode* node = m_nodes + nodeId;
- if (node->IsLeaf()) {
- return 0;
- }
- int32 height1 = ComputeHeight(node->child1);
- int32 height2 = ComputeHeight(node->child2);
- return 1 + b2Max(height1, height2);
- }
- int32 b2DynamicTree::ComputeHeight() const {
- int32 height = ComputeHeight(m_root);
- return height;
- }
- void b2DynamicTree::ValidateStructure(int32 index) const {
- if (index == b2_nullNode) {
- return;
- }
- if (index == m_root) {
- b2Assert(m_nodes[index].parent == b2_nullNode);
- }
- const b2TreeNode* node = m_nodes + index;
- int32 child1 = node->child1;
- int32 child2 = node->child2;
- if (node->IsLeaf()) {
- b2Assert(child1 == b2_nullNode);
- b2Assert(child2 == b2_nullNode);
- b2Assert(node->height == 0);
- return;
- }
- b2Assert(0 <= child1 && child1 < m_nodeCapacity);
- b2Assert(0 <= child2 && child2 < m_nodeCapacity);
- b2Assert(m_nodes[child1].parent == index);
- b2Assert(m_nodes[child2].parent == index);
- ValidateStructure(child1);
- ValidateStructure(child2);
- }
- void b2DynamicTree::ValidateMetrics(int32 index) const {
- if (index == b2_nullNode) {
- return;
- }
- const b2TreeNode* node = m_nodes + index;
- int32 child1 = node->child1;
- int32 child2 = node->child2;
- if (node->IsLeaf()) {
- b2Assert(child1 == b2_nullNode);
- b2Assert(child2 == b2_nullNode);
- b2Assert(node->height == 0);
- return;
- }
- b2Assert(0 <= child1 && child1 < m_nodeCapacity);
- b2Assert(0 <= child2 && child2 < m_nodeCapacity);
- int32 height1 = m_nodes[child1].height;
- int32 height2 = m_nodes[child2].height;
- int32 height;
- height = 1 + b2Max(height1, height2);
- b2Assert(node->height == height);
- b2AABB aabb;
- aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb);
- b2Assert(aabb.lowerBound == node->aabb.lowerBound);
- b2Assert(aabb.upperBound == node->aabb.upperBound);
- ValidateMetrics(child1);
- ValidateMetrics(child2);
- }
- void b2DynamicTree::Validate() const {
- #if defined(b2DEBUG)
- ValidateStructure(m_root);
- ValidateMetrics(m_root);
- int32 freeCount = 0;
- int32 freeIndex = m_freeList;
- while (freeIndex != b2_nullNode) {
- b2Assert(0 <= freeIndex && freeIndex < m_nodeCapacity);
- freeIndex = m_nodes[freeIndex].next;
- ++freeCount;
- }
- b2Assert(GetHeight() == ComputeHeight());
- b2Assert(m_nodeCount + freeCount == m_nodeCapacity);
- #endif
- }
- int32 b2DynamicTree::GetMaxBalance() const {
- int32 maxBalance = 0;
- for (int32 i = 0; i < m_nodeCapacity; ++i) {
- const b2TreeNode* node = m_nodes + i;
- if (node->height <= 1) {
- continue;
- }
- b2Assert(node->IsLeaf() == false);
- int32 child1 = node->child1;
- int32 child2 = node->child2;
- int32 balance = b2Abs(m_nodes[child2].height - m_nodes[child1].height);
- maxBalance = b2Max(maxBalance, balance);
- }
- return maxBalance;
- }
- void b2DynamicTree::RebuildBottomUp() {
- int32* nodes = (int32*)b2Alloc(m_nodeCount * sizeof(int32));
- int32 count = 0;
- // Build array of leaves. Free the rest.
- for (int32 i = 0; i < m_nodeCapacity; ++i) {
- if (m_nodes[i].height < 0) {
- // free node in pool
- continue;
- }
- if (m_nodes[i].IsLeaf()) {
- m_nodes[i].parent = b2_nullNode;
- nodes[count] = i;
- ++count;
- } else {
- FreeNode(i);
- }
- }
- while (count > 1) {
- float minCost = b2_maxFloat;
- int32 iMin = -1, jMin = -1;
- for (int32 i = 0; i < count; ++i) {
- b2AABB aabbi = m_nodes[nodes[i]].aabb;
- for (int32 j = i + 1; j < count; ++j) {
- b2AABB aabbj = m_nodes[nodes[j]].aabb;
- b2AABB b;
- b.Combine(aabbi, aabbj);
- float cost = b.GetPerimeter();
- if (cost < minCost) {
- iMin = i;
- jMin = j;
- minCost = cost;
- }
- }
- }
- int32 index1 = nodes[iMin];
- int32 index2 = nodes[jMin];
- b2TreeNode* child1 = m_nodes + index1;
- b2TreeNode* child2 = m_nodes + index2;
- int32 parentIndex = AllocateNode();
- b2TreeNode* parent = m_nodes + parentIndex;
- parent->child1 = index1;
- parent->child2 = index2;
- parent->height = 1 + b2Max(child1->height, child2->height);
- parent->aabb.Combine(child1->aabb, child2->aabb);
- parent->parent = b2_nullNode;
- child1->parent = parentIndex;
- child2->parent = parentIndex;
- nodes[jMin] = nodes[count - 1];
- nodes[iMin] = parentIndex;
- --count;
- }
- m_root = nodes[0];
- b2Free(nodes);
- Validate();
- }
- void b2DynamicTree::ShiftOrigin(const b2Vec2& newOrigin) {
- // Build array of leaves. Free the rest.
- for (int32 i = 0; i < m_nodeCapacity; ++i) {
- m_nodes[i].aabb.lowerBound -= newOrigin;
- m_nodes[i].aabb.upperBound -= newOrigin;
- }
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_edge_shape.h"
- //#include "box2d/b2_block_allocator.h"
- #include <new>
- void b2EdgeShape::SetOneSided(const b2Vec2& v0, const b2Vec2& v1, const b2Vec2& v2, const b2Vec2& v3) {
- m_vertex0 = v0;
- m_vertex1 = v1;
- m_vertex2 = v2;
- m_vertex3 = v3;
- m_oneSided = true;
- }
- void b2EdgeShape::SetTwoSided(const b2Vec2& v1, const b2Vec2& v2) {
- m_vertex1 = v1;
- m_vertex2 = v2;
- m_oneSided = false;
- }
- b2Shape* b2EdgeShape::Clone(b2BlockAllocator* allocator) const {
- void* mem = allocator->Allocate(sizeof(b2EdgeShape));
- b2EdgeShape* clone = new (mem) b2EdgeShape;
- *clone = *this;
- return clone;
- }
- int32 b2EdgeShape::GetChildCount() const {
- return 1;
- }
- bool b2EdgeShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const {
- B2_NOT_USED(xf);
- B2_NOT_USED(p);
- return false;
- }
- // p = p1 + t * d
- // v = v1 + s * e
- // p1 + t * d = v1 + s * e
- // s * e - t * d = p1 - v1
- bool b2EdgeShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
- const b2Transform& xf, int32 childIndex) const {
- B2_NOT_USED(childIndex);
- // Put the ray into the edge's frame of reference.
- b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p);
- b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p);
- b2Vec2 d = p2 - p1;
- b2Vec2 v1 = m_vertex1;
- b2Vec2 v2 = m_vertex2;
- b2Vec2 e = v2 - v1;
- // Normal points to the right, looking from v1 at v2
- b2Vec2 normal(e.y, -e.x);
- normal.Normalize();
- // q = p1 + t * d
- // dot(normal, q - v1) = 0
- // dot(normal, p1 - v1) + t * dot(normal, d) = 0
- float numerator = b2Dot(normal, v1 - p1);
- if (m_oneSided && numerator > 0.0f) {
- return false;
- }
- float denominator = b2Dot(normal, d);
- if (denominator == 0.0f) {
- return false;
- }
- float t = numerator / denominator;
- if (t < 0.0f || input.maxFraction < t) {
- return false;
- }
- b2Vec2 q = p1 + t * d;
- // q = v1 + s * r
- // s = dot(q - v1, r) / dot(r, r)
- b2Vec2 r = v2 - v1;
- float rr = b2Dot(r, r);
- if (rr == 0.0f) {
- return false;
- }
- float s = b2Dot(q - v1, r) / rr;
- if (s < 0.0f || 1.0f < s) {
- return false;
- }
- output->fraction = t;
- if (numerator > 0.0f) {
- output->normal = -b2Mul(xf.q, normal);
- } else {
- output->normal = b2Mul(xf.q, normal);
- }
- return true;
- }
- void b2EdgeShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const {
- B2_NOT_USED(childIndex);
- b2Vec2 v1 = b2Mul(xf, m_vertex1);
- b2Vec2 v2 = b2Mul(xf, m_vertex2);
- b2Vec2 lower = b2Min(v1, v2);
- b2Vec2 upper = b2Max(v1, v2);
- b2Vec2 r(m_radius, m_radius);
- aabb->lowerBound = lower - r;
- aabb->upperBound = upper + r;
- }
- void b2EdgeShape::ComputeMass(b2MassData* massData, float density) const {
- B2_NOT_USED(density);
- massData->mass = 0.0f;
- massData->center = 0.5f * (m_vertex1 + m_vertex2);
- massData->I = 0.0f;
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_polygon_shape.h"
- //#include "box2d/b2_block_allocator.h"
- #include <new>
- b2Shape* b2PolygonShape::Clone(b2BlockAllocator* allocator) const {
- void* mem = allocator->Allocate(sizeof(b2PolygonShape));
- b2PolygonShape* clone = new (mem) b2PolygonShape;
- *clone = *this;
- return clone;
- }
- void b2PolygonShape::SetAsBox(float hx, float hy) {
- m_count = 4;
- m_vertices[0].Set(-hx, -hy);
- m_vertices[1].Set(hx, -hy);
- m_vertices[2].Set(hx, hy);
- m_vertices[3].Set(-hx, hy);
- m_normals[0].Set(0.0f, -1.0f);
- m_normals[1].Set(1.0f, 0.0f);
- m_normals[2].Set(0.0f, 1.0f);
- m_normals[3].Set(-1.0f, 0.0f);
- m_centroid.SetZero();
- }
- void b2PolygonShape::SetAsBox(float hx, float hy, const b2Vec2& center, float angle) {
- m_count = 4;
- m_vertices[0].Set(-hx, -hy);
- m_vertices[1].Set(hx, -hy);
- m_vertices[2].Set(hx, hy);
- m_vertices[3].Set(-hx, hy);
- m_normals[0].Set(0.0f, -1.0f);
- m_normals[1].Set(1.0f, 0.0f);
- m_normals[2].Set(0.0f, 1.0f);
- m_normals[3].Set(-1.0f, 0.0f);
- m_centroid = center;
- b2Transform xf;
- xf.p = center;
- xf.q.Set(angle);
- // Transform vertices and normals.
- for (int32 i = 0; i < m_count; ++i) {
- m_vertices[i] = b2Mul(xf, m_vertices[i]);
- m_normals[i] = b2Mul(xf.q, m_normals[i]);
- }
- }
- int32 b2PolygonShape::GetChildCount() const {
- return 1;
- }
- static b2Vec2 ComputeCentroid(const b2Vec2* vs, int32 count) {
- b2Assert(count >= 3);
- b2Vec2 c(0.0f, 0.0f);
- float area = 0.0f;
- // Get a reference point for forming triangles.
- // Use the first vertex to reduce round-off errors.
- b2Vec2 s = vs[0];
- const float inv3 = 1.0f / 3.0f;
- for (int32 i = 0; i < count; ++i) {
- // Triangle vertices.
- b2Vec2 p1 = vs[0] - s;
- b2Vec2 p2 = vs[i] - s;
- b2Vec2 p3 = i + 1 < count ? vs[i + 1] - s : vs[0] - s;
- b2Vec2 e1 = p2 - p1;
- b2Vec2 e2 = p3 - p1;
- float D = b2Cross(e1, e2);
- float triangleArea = 0.5f * D;
- area += triangleArea;
- // Area weighted centroid
- c += triangleArea * inv3 * (p1 + p2 + p3);
- }
- // Centroid
- b2Assert(area > b2_epsilon);
- c = (1.0f / area) * c + s;
- return c;
- }
- void b2PolygonShape::Set(const b2Vec2* vertices, int32 count) {
- b2Assert(3 <= count && count <= b2_maxPolygonVertices);
- if (count < 3) {
- SetAsBox(1.0f, 1.0f);
- return;
- }
- int32 n = b2Min(count, b2_maxPolygonVertices);
- // Perform welding and copy vertices into local buffer.
- b2Vec2 ps[b2_maxPolygonVertices];
- int32 tempCount = 0;
- for (int32 i = 0; i < n; ++i) {
- b2Vec2 v = vertices[i];
- bool unique = true;
- for (int32 j = 0; j < tempCount; ++j) {
- if (b2DistanceSquared(v, ps[j]) < ((0.5f * b2_linearSlop) * (0.5f * b2_linearSlop))) {
- unique = false;
- break;
- }
- }
- if (unique) {
- ps[tempCount++] = v;
- }
- }
- n = tempCount;
- if (n < 3) {
- // Polygon is degenerate.
- b2Assert(false);
- SetAsBox(1.0f, 1.0f);
- return;
- }
- // Create the convex hull using the Gift wrapping algorithm
- // http://en.wikipedia.org/wiki/Gift_wrapping_algorithm
- // Find the right most point on the hull
- int32 i0 = 0;
- float x0 = ps[0].x;
- for (int32 i = 1; i < n; ++i) {
- float x = ps[i].x;
- if (x > x0 || (x == x0 && ps[i].y < ps[i0].y)) {
- i0 = i;
- x0 = x;
- }
- }
- int32 hull[b2_maxPolygonVertices];
- int32 m = 0;
- int32 ih = i0;
- for (;;) {
- b2Assert(m < b2_maxPolygonVertices);
- hull[m] = ih;
- int32 ie = 0;
- for (int32 j = 1; j < n; ++j) {
- if (ie == ih) {
- ie = j;
- continue;
- }
- b2Vec2 r = ps[ie] - ps[hull[m]];
- b2Vec2 v = ps[j] - ps[hull[m]];
- float c = b2Cross(r, v);
- if (c < 0.0f) {
- ie = j;
- }
- // Collinearity check
- if (c == 0.0f && v.LengthSquared() > r.LengthSquared()) {
- ie = j;
- }
- }
- ++m;
- ih = ie;
- if (ie == i0) {
- break;
- }
- }
- if (m < 3) {
- // Polygon is degenerate.
- b2Assert(false);
- SetAsBox(1.0f, 1.0f);
- return;
- }
- m_count = m;
- // Copy vertices.
- for (int32 i = 0; i < m; ++i) {
- m_vertices[i] = ps[hull[i]];
- }
- // Compute normals. Ensure the edges have non-zero length.
- for (int32 i = 0; i < m; ++i) {
- int32 i1 = i;
- int32 i2 = i + 1 < m ? i + 1 : 0;
- b2Vec2 edge = m_vertices[i2] - m_vertices[i1];
- b2Assert(edge.LengthSquared() > b2_epsilon * b2_epsilon);
- m_normals[i] = b2Cross(edge, 1.0f);
- m_normals[i].Normalize();
- }
- // Compute the polygon centroid.
- m_centroid = ComputeCentroid(m_vertices, m);
- }
- bool b2PolygonShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const {
- b2Vec2 pLocal = b2MulT(xf.q, p - xf.p);
- for (int32 i = 0; i < m_count; ++i) {
- float dot = b2Dot(m_normals[i], pLocal - m_vertices[i]);
- if (dot > 0.0f) {
- return false;
- }
- }
- return true;
- }
- bool b2PolygonShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
- const b2Transform& xf, int32 childIndex) const {
- B2_NOT_USED(childIndex);
- // Put the ray into the polygon's frame of reference.
- b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p);
- b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p);
- b2Vec2 d = p2 - p1;
- float lower = 0.0f, upper = input.maxFraction;
- int32 index = -1;
- for (int32 i = 0; i < m_count; ++i) {
- // p = p1 + a * d
- // dot(normal, p - v) = 0
- // dot(normal, p1 - v) + a * dot(normal, d) = 0
- float numerator = b2Dot(m_normals[i], m_vertices[i] - p1);
- float denominator = b2Dot(m_normals[i], d);
- if (denominator == 0.0f) {
- if (numerator < 0.0f) {
- return false;
- }
- } else {
- // Note: we want this predicate without division:
- // lower < numerator / denominator, where denominator < 0
- // Since denominator < 0, we have to flip the inequality:
- // lower < numerator / denominator <==> denominator * lower > numerator.
- if (denominator < 0.0f && numerator < lower * denominator) {
- // Increase lower.
- // The segment enters this half-space.
- lower = numerator / denominator;
- index = i;
- } else if (denominator > 0.0f && numerator < upper * denominator) {
- // Decrease upper.
- // The segment exits this half-space.
- upper = numerator / denominator;
- }
- }
- // The use of epsilon here causes the assert on lower to trip
- // in some cases. Apparently the use of epsilon was to make edge
- // shapes work, but now those are handled separately.
- //if (upper < lower - b2_epsilon)
- if (upper < lower) {
- return false;
- }
- }
- b2Assert(0.0f <= lower && lower <= input.maxFraction);
- if (index >= 0) {
- output->fraction = lower;
- output->normal = b2Mul(xf.q, m_normals[index]);
- return true;
- }
- return false;
- }
- void b2PolygonShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const {
- B2_NOT_USED(childIndex);
- b2Vec2 lower = b2Mul(xf, m_vertices[0]);
- b2Vec2 upper = lower;
- for (int32 i = 1; i < m_count; ++i) {
- b2Vec2 v = b2Mul(xf, m_vertices[i]);
- lower = b2Min(lower, v);
- upper = b2Max(upper, v);
- }
- b2Vec2 r(m_radius, m_radius);
- aabb->lowerBound = lower - r;
- aabb->upperBound = upper + r;
- }
- void b2PolygonShape::ComputeMass(b2MassData* massData, float density) const {
- // Polygon mass, centroid, and inertia.
- // Let rho be the polygon density in mass per unit area.
- // Then:
- // mass = rho * int(dA)
- // centroid.x = (1/mass) * rho * int(x * dA)
- // centroid.y = (1/mass) * rho * int(y * dA)
- // I = rho * int((x*x + y*y) * dA)
- //
- // We can compute these integrals by summing all the integrals
- // for each triangle of the polygon. To evaluate the integral
- // for a single triangle, we make a change of variables to
- // the (u,v) coordinates of the triangle:
- // x = x0 + e1x * u + e2x * v
- // y = y0 + e1y * u + e2y * v
- // where 0 <= u && 0 <= v && u + v <= 1.
- //
- // We integrate u from [0,1-v] and then v from [0,1].
- // We also need to use the Jacobian of the transformation:
- // D = cross(e1, e2)
- //
- // Simplification: triangle centroid = (1/3) * (p1 + p2 + p3)
- //
- // The rest of the derivation is handled by computer algebra.
- b2Assert(m_count >= 3);
- b2Vec2 center(0.0f, 0.0f);
- float area = 0.0f;
- float I = 0.0f;
- // Get a reference point for forming triangles.
- // Use the first vertex to reduce round-off errors.
- b2Vec2 s = m_vertices[0];
- const float k_inv3 = 1.0f / 3.0f;
- for (int32 i = 0; i < m_count; ++i) {
- // Triangle vertices.
- b2Vec2 e1 = m_vertices[i] - s;
- b2Vec2 e2 = i + 1 < m_count ? m_vertices[i + 1] - s : m_vertices[0] - s;
- float D = b2Cross(e1, e2);
- float triangleArea = 0.5f * D;
- area += triangleArea;
- // Area weighted centroid
- center += triangleArea * k_inv3 * (e1 + e2);
- float ex1 = e1.x, ey1 = e1.y;
- float ex2 = e2.x, ey2 = e2.y;
- float intx2 = ex1 * ex1 + ex2 * ex1 + ex2 * ex2;
- float inty2 = ey1 * ey1 + ey2 * ey1 + ey2 * ey2;
- I += (0.25f * k_inv3 * D) * (intx2 + inty2);
- }
- // Total mass
- massData->mass = density * area;
- // Center of mass
- b2Assert(area > b2_epsilon);
- center *= 1.0f / area;
- massData->center = center + s;
- // Inertia tensor relative to the local origin (point s).
- massData->I = density * I;
- // Shift to center of mass then to original body origin.
- massData->I += massData->mass * (b2Dot(massData->center, massData->center) - b2Dot(center, center));
- }
- bool b2PolygonShape::Validate() const {
- for (int32 i = 0; i < m_count; ++i) {
- int32 i1 = i;
- int32 i2 = i < m_count - 1 ? i1 + 1 : 0;
- b2Vec2 p = m_vertices[i1];
- b2Vec2 e = m_vertices[i2] - p;
- for (int32 j = 0; j < m_count; ++j) {
- if (j == i1 || j == i2) {
- continue;
- }
- b2Vec2 v = m_vertices[j] - p;
- float c = b2Cross(e, v);
- if (c < 0.0f) {
- return false;
- }
- }
- }
- return true;
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_collision.h"
- //#include "box2d/b2_distance.h"
- //#include "box2d/b2_circle_shape.h"
- //#include "box2d/b2_polygon_shape.h"
- //#include "box2d/b2_time_of_impact.h"
- //#include "box2d/b2_timer.h"
- #include <stdio.h>
- B2_API float b2_toiTime, b2_toiMaxTime;
- B2_API int32 b2_toiCalls, b2_toiIters, b2_toiMaxIters;
- B2_API int32 b2_toiRootIters, b2_toiMaxRootIters;
- //
- struct b2SeparationFunction {
- enum Type {
- e_points,
- e_faceA,
- e_faceB
- };
- // TODO_ERIN might not need to return the separation
- float Initialize(const b2SimplexCache* cache,
- const b2DistanceProxy* proxyA, const b2Sweep& sweepA,
- const b2DistanceProxy* proxyB, const b2Sweep& sweepB,
- float t1) {
- m_proxyA = proxyA;
- m_proxyB = proxyB;
- int32 count = cache->count;
- b2Assert(0 < count && count < 3);
- m_sweepA = sweepA;
- m_sweepB = sweepB;
- b2Transform xfA, xfB;
- m_sweepA.GetTransform(&xfA, t1);
- m_sweepB.GetTransform(&xfB, t1);
- if (count == 1) {
- m_type = e_points;
- b2Vec2 localPointA = m_proxyA->GetVertex(cache->indexA[0]);
- b2Vec2 localPointB = m_proxyB->GetVertex(cache->indexB[0]);
- b2Vec2 pointA = b2Mul(xfA, localPointA);
- b2Vec2 pointB = b2Mul(xfB, localPointB);
- m_axis = pointB - pointA;
- float s = m_axis.Normalize();
- return s;
- } else if (cache->indexA[0] == cache->indexA[1]) {
- // Two points on B and one on A.
- m_type = e_faceB;
- b2Vec2 localPointB1 = proxyB->GetVertex(cache->indexB[0]);
- b2Vec2 localPointB2 = proxyB->GetVertex(cache->indexB[1]);
- m_axis = b2Cross(localPointB2 - localPointB1, 1.0f);
- m_axis.Normalize();
- b2Vec2 normal = b2Mul(xfB.q, m_axis);
- m_localPoint = 0.5f * (localPointB1 + localPointB2);
- b2Vec2 pointB = b2Mul(xfB, m_localPoint);
- b2Vec2 localPointA = proxyA->GetVertex(cache->indexA[0]);
- b2Vec2 pointA = b2Mul(xfA, localPointA);
- float s = b2Dot(pointA - pointB, normal);
- if (s < 0.0f) {
- m_axis = -m_axis;
- s = -s;
- }
- return s;
- } else {
- // Two points on A and one or two points on B.
- m_type = e_faceA;
- b2Vec2 localPointA1 = m_proxyA->GetVertex(cache->indexA[0]);
- b2Vec2 localPointA2 = m_proxyA->GetVertex(cache->indexA[1]);
- m_axis = b2Cross(localPointA2 - localPointA1, 1.0f);
- m_axis.Normalize();
- b2Vec2 normal = b2Mul(xfA.q, m_axis);
- m_localPoint = 0.5f * (localPointA1 + localPointA2);
- b2Vec2 pointA = b2Mul(xfA, m_localPoint);
- b2Vec2 localPointB = m_proxyB->GetVertex(cache->indexB[0]);
- b2Vec2 pointB = b2Mul(xfB, localPointB);
- float s = b2Dot(pointB - pointA, normal);
- if (s < 0.0f) {
- m_axis = -m_axis;
- s = -s;
- }
- return s;
- }
- }
- //
- float FindMinSeparation(int32* indexA, int32* indexB, float t) const {
- b2Transform xfA, xfB;
- m_sweepA.GetTransform(&xfA, t);
- m_sweepB.GetTransform(&xfB, t);
- switch (m_type) {
- case e_points:
- {
- b2Vec2 axisA = b2MulT(xfA.q, m_axis);
- b2Vec2 axisB = b2MulT(xfB.q, -m_axis);
- *indexA = m_proxyA->GetSupport(axisA);
- *indexB = m_proxyB->GetSupport(axisB);
- b2Vec2 localPointA = m_proxyA->GetVertex(*indexA);
- b2Vec2 localPointB = m_proxyB->GetVertex(*indexB);
- b2Vec2 pointA = b2Mul(xfA, localPointA);
- b2Vec2 pointB = b2Mul(xfB, localPointB);
- float separation = b2Dot(pointB - pointA, m_axis);
- return separation;
- }
- case e_faceA:
- {
- b2Vec2 normal = b2Mul(xfA.q, m_axis);
- b2Vec2 pointA = b2Mul(xfA, m_localPoint);
- b2Vec2 axisB = b2MulT(xfB.q, -normal);
- *indexA = -1;
- *indexB = m_proxyB->GetSupport(axisB);
- b2Vec2 localPointB = m_proxyB->GetVertex(*indexB);
- b2Vec2 pointB = b2Mul(xfB, localPointB);
- float separation = b2Dot(pointB - pointA, normal);
- return separation;
- }
- case e_faceB:
- {
- b2Vec2 normal = b2Mul(xfB.q, m_axis);
- b2Vec2 pointB = b2Mul(xfB, m_localPoint);
- b2Vec2 axisA = b2MulT(xfA.q, -normal);
- *indexB = -1;
- *indexA = m_proxyA->GetSupport(axisA);
- b2Vec2 localPointA = m_proxyA->GetVertex(*indexA);
- b2Vec2 pointA = b2Mul(xfA, localPointA);
- float separation = b2Dot(pointA - pointB, normal);
- return separation;
- }
- default:
- b2Assert(false);
- *indexA = -1;
- *indexB = -1;
- return 0.0f;
- }
- }
- //
- float Evaluate(int32 indexA, int32 indexB, float t) const {
- b2Transform xfA, xfB;
- m_sweepA.GetTransform(&xfA, t);
- m_sweepB.GetTransform(&xfB, t);
- switch (m_type) {
- case e_points:
- {
- b2Vec2 localPointA = m_proxyA->GetVertex(indexA);
- b2Vec2 localPointB = m_proxyB->GetVertex(indexB);
- b2Vec2 pointA = b2Mul(xfA, localPointA);
- b2Vec2 pointB = b2Mul(xfB, localPointB);
- float separation = b2Dot(pointB - pointA, m_axis);
- return separation;
- }
- case e_faceA:
- {
- b2Vec2 normal = b2Mul(xfA.q, m_axis);
- b2Vec2 pointA = b2Mul(xfA, m_localPoint);
- b2Vec2 localPointB = m_proxyB->GetVertex(indexB);
- b2Vec2 pointB = b2Mul(xfB, localPointB);
- float separation = b2Dot(pointB - pointA, normal);
- return separation;
- }
- case e_faceB:
- {
- b2Vec2 normal = b2Mul(xfB.q, m_axis);
- b2Vec2 pointB = b2Mul(xfB, m_localPoint);
- b2Vec2 localPointA = m_proxyA->GetVertex(indexA);
- b2Vec2 pointA = b2Mul(xfA, localPointA);
- float separation = b2Dot(pointA - pointB, normal);
- return separation;
- }
- default:
- b2Assert(false);
- return 0.0f;
- }
- }
- const b2DistanceProxy* m_proxyA;
- const b2DistanceProxy* m_proxyB;
- b2Sweep m_sweepA, m_sweepB;
- Type m_type;
- b2Vec2 m_localPoint;
- b2Vec2 m_axis;
- };
- // CCD via the local separating axis method. This seeks progression
- // by computing the largest time at which separation is maintained.
- void b2TimeOfImpact(b2TOIOutput* output, const b2TOIInput* input) {
- b2Timer timer;
- ++b2_toiCalls;
- output->state = b2TOIOutput::e_unknown;
- output->t = input->tMax;
- const b2DistanceProxy* proxyA = &input->proxyA;
- const b2DistanceProxy* proxyB = &input->proxyB;
- b2Sweep sweepA = input->sweepA;
- b2Sweep sweepB = input->sweepB;
- // Large rotations can make the root finder fail, so we normalize the
- // sweep angles.
- sweepA.Normalize();
- sweepB.Normalize();
- float tMax = input->tMax;
- float totalRadius = proxyA->m_radius + proxyB->m_radius;
- float target = b2Max(b2_linearSlop, totalRadius - 3.0f * b2_linearSlop);
- float tolerance = 0.25f * b2_linearSlop;
- b2Assert(target > tolerance);
- float t1 = 0.0f;
- const int32 k_maxIterations = 20; // TODO_ERIN b2Settings
- int32 iter = 0;
- // Prepare input for distance query.
- b2SimplexCache cache;
- cache.count = 0;
- b2DistanceInput distanceInput;
- distanceInput.proxyA = input->proxyA;
- distanceInput.proxyB = input->proxyB;
- distanceInput.useRadii = false;
- // The outer loop progressively attempts to compute new separating axes.
- // This loop terminates when an axis is repeated (no progress is made).
- for (;;) {
- b2Transform xfA, xfB;
- sweepA.GetTransform(&xfA, t1);
- sweepB.GetTransform(&xfB, t1);
- // Get the distance between shapes. We can also use the results
- // to get a separating axis.
- distanceInput.transformA = xfA;
- distanceInput.transformB = xfB;
- b2DistanceOutput distanceOutput;
- b2Distance(&distanceOutput, &cache, &distanceInput);
- // If the shapes are overlapped, we give up on continuous collision.
- if (distanceOutput.distance <= 0.0f) {
- // Failure!
- output->state = b2TOIOutput::e_overlapped;
- output->t = 0.0f;
- break;
- }
- if (distanceOutput.distance < target + tolerance) {
- // Victory!
- output->state = b2TOIOutput::e_touching;
- output->t = t1;
- break;
- }
- // Initialize the separating axis.
- b2SeparationFunction fcn;
- fcn.Initialize(&cache, proxyA, sweepA, proxyB, sweepB, t1);
- #if 0
- // Dump the curve seen by the root finder
- {
- const int32 N = 100;
- float dx = 1.0f / N;
- float xs[N + 1];
- float fs[N + 1];
- float x = 0.0f;
- for (int32 i = 0; i <= N; ++i) {
- sweepA.GetTransform(&xfA, x);
- sweepB.GetTransform(&xfB, x);
- float f = fcn.Evaluate(xfA, xfB) - target;
- printf("%g %g\n", x, f);
- xs[i] = x;
- fs[i] = f;
- x += dx;
- }
- }
- #endif
- // Compute the TOI on the separating axis. We do this by successively
- // resolving the deepest point. This loop is bounded by the number of vertices.
- bool done = false;
- float t2 = tMax;
- int32 pushBackIter = 0;
- for (;;) {
- // Find the deepest point at t2. Store the witness point indices.
- int32 indexA, indexB;
- float s2 = fcn.FindMinSeparation(&indexA, &indexB, t2);
- // Is the final configuration separated?
- if (s2 > target + tolerance) {
- // Victory!
- output->state = b2TOIOutput::e_separated;
- output->t = tMax;
- done = true;
- break;
- }
- // Has the separation reached tolerance?
- if (s2 > target - tolerance) {
- // Advance the sweeps
- t1 = t2;
- break;
- }
- // Compute the initial separation of the witness points.
- float s1 = fcn.Evaluate(indexA, indexB, t1);
- // Check for initial overlap. This might happen if the root finder
- // runs out of iterations.
- if (s1 < target - tolerance) {
- output->state = b2TOIOutput::e_failed;
- output->t = t1;
- done = true;
- break;
- }
- // Check for touching
- if (s1 <= target + tolerance) {
- // Victory! t1 should hold the TOI (could be 0.0).
- output->state = b2TOIOutput::e_touching;
- output->t = t1;
- done = true;
- break;
- }
- // Compute 1D root of: f(x) - target = 0
- int32 rootIterCount = 0;
- float a1 = t1, a2 = t2;
- for (;;) {
- // Use a mix of the secant rule and bisection.
- float t;
- if (rootIterCount & 1) {
- // Secant rule to improve convergence.
- t = a1 + (target - s1) * (a2 - a1) / (s2 - s1);
- } else {
- // Bisection to guarantee progress.
- t = 0.5f * (a1 + a2);
- }
- ++rootIterCount;
- ++b2_toiRootIters;
- float s = fcn.Evaluate(indexA, indexB, t);
- if (b2Abs(s - target) < tolerance) {
- // t2 holds a tentative value for t1
- t2 = t;
- break;
- }
- // Ensure we continue to bracket the root.
- if (s > target) {
- a1 = t;
- s1 = s;
- } else {
- a2 = t;
- s2 = s;
- }
- if (rootIterCount == 50) {
- break;
- }
- }
- b2_toiMaxRootIters = b2Max(b2_toiMaxRootIters, rootIterCount);
- ++pushBackIter;
- if (pushBackIter == b2_maxPolygonVertices) {
- break;
- }
- }
- ++iter;
- ++b2_toiIters;
- if (done) {
- break;
- }
- if (iter == k_maxIterations) {
- // Root finder got stuck. Semi-victory.
- output->state = b2TOIOutput::e_failed;
- output->t = t1;
- break;
- }
- }
- b2_toiMaxIters = b2Max(b2_toiMaxIters, iter);
- float time = timer.GetMilliseconds();
- b2_toiMaxTime = b2Max(b2_toiMaxTime, time);
- b2_toiTime += time;
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_block_allocator.h"
- #include <limits.h>
- #include <string.h>
- #include <stddef.h>
- static const int32 b2_chunkSize = 16 * 1024;
- static const int32 b2_maxBlockSize = 640;
- static const int32 b2_chunkArrayIncrement = 128;
- // These are the supported object sizes. Actual allocations are rounded up the next size.
- static const int32 b2_blockSizes[b2_blockSizeCount] =
- {
- 16, // 0
- 32, // 1
- 64, // 2
- 96, // 3
- 128, // 4
- 160, // 5
- 192, // 6
- 224, // 7
- 256, // 8
- 320, // 9
- 384, // 10
- 448, // 11
- 512, // 12
- 640, // 13
- };
- // This maps an arbitrary allocation size to a suitable slot in b2_blockSizes.
- struct b2SizeMap {
- b2SizeMap() {
- int32 j = 0;
- values[0] = 0;
- for (int32 i = 1; i <= b2_maxBlockSize; ++i) {
- b2Assert(j < b2_blockSizeCount);
- if (i <= b2_blockSizes[j]) {
- values[i] = (uint8)j;
- } else {
- ++j;
- values[i] = (uint8)j;
- }
- }
- }
- uint8 values[b2_maxBlockSize + 1];
- };
- static const b2SizeMap b2_sizeMap;
- struct b2Chunk {
- int32 blockSize;
- b2Block* blocks;
- };
- struct b2Block {
- b2Block* next;
- };
- b2BlockAllocator::b2BlockAllocator() {
- b2Assert(b2_blockSizeCount < UCHAR_MAX);
- m_chunkSpace = b2_chunkArrayIncrement;
- m_chunkCount = 0;
- m_chunks = (b2Chunk*)b2Alloc(m_chunkSpace * sizeof(b2Chunk));
- memset(m_chunks, 0, m_chunkSpace * sizeof(b2Chunk));
- memset(m_freeLists, 0, sizeof(m_freeLists));
- }
- b2BlockAllocator::~b2BlockAllocator() {
- for (int32 i = 0; i < m_chunkCount; ++i) {
- b2Free(m_chunks[i].blocks);
- }
- b2Free(m_chunks);
- }
- void* b2BlockAllocator::Allocate(int32 size) {
- if (size == 0) {
- return nullptr;
- }
- b2Assert(0 < size);
- if (size > b2_maxBlockSize) {
- return b2Alloc(size);
- }
- int32 index = b2_sizeMap.values[size];
- b2Assert(0 <= index && index < b2_blockSizeCount);
- if (m_freeLists[index]) {
- b2Block* block = m_freeLists[index];
- m_freeLists[index] = block->next;
- return block;
- } else {
- if (m_chunkCount == m_chunkSpace) {
- b2Chunk* oldChunks = m_chunks;
- m_chunkSpace += b2_chunkArrayIncrement;
- m_chunks = (b2Chunk*)b2Alloc(m_chunkSpace * sizeof(b2Chunk));
- memcpy(m_chunks, oldChunks, m_chunkCount * sizeof(b2Chunk));
- memset(m_chunks + m_chunkCount, 0, b2_chunkArrayIncrement * sizeof(b2Chunk));
- b2Free(oldChunks);
- }
- b2Chunk* chunk = m_chunks + m_chunkCount;
- chunk->blocks = (b2Block*)b2Alloc(b2_chunkSize);
- #if defined(_DEBUG)
- memset(chunk->blocks, 0xcd, b2_chunkSize);
- #endif
- int32 blockSize = b2_blockSizes[index];
- chunk->blockSize = blockSize;
- int32 blockCount = b2_chunkSize / blockSize;
- b2Assert(blockCount * blockSize <= b2_chunkSize);
- for (int32 i = 0; i < blockCount - 1; ++i) {
- b2Block* block = (b2Block*)((int8*)chunk->blocks + blockSize * i);
- b2Block* next = (b2Block*)((int8*)chunk->blocks + blockSize * (i + 1));
- block->next = next;
- }
- b2Block* last = (b2Block*)((int8*)chunk->blocks + blockSize * (blockCount - 1));
- last->next = nullptr;
- m_freeLists[index] = chunk->blocks->next;
- ++m_chunkCount;
- return chunk->blocks;
- }
- }
- void b2BlockAllocator::Free(void* p, int32 size) {
- if (size == 0) {
- return;
- }
- b2Assert(0 < size);
- if (size > b2_maxBlockSize) {
- b2Free(p);
- return;
- }
- int32 index = b2_sizeMap.values[size];
- b2Assert(0 <= index && index < b2_blockSizeCount);
- #if defined(_DEBUG)
- // Verify the memory address and size is valid.
- int32 blockSize = b2_blockSizes[index];
- bool found = false;
- for (int32 i = 0; i < m_chunkCount; ++i) {
- b2Chunk* chunk = m_chunks + i;
- if (chunk->blockSize != blockSize) {
- b2Assert((int8*)p + blockSize <= (int8*)chunk->blocks ||
- (int8*)chunk->blocks + b2_chunkSize <= (int8*)p);
- } else {
- if ((int8*)chunk->blocks <= (int8*)p && (int8*)p + blockSize <= (int8*)chunk->blocks + b2_chunkSize) {
- found = true;
- }
- }
- }
- b2Assert(found);
- memset(p, 0xfd, blockSize);
- #endif
- b2Block* block = (b2Block*)p;
- block->next = m_freeLists[index];
- m_freeLists[index] = block;
- }
- void b2BlockAllocator::Clear() {
- for (int32 i = 0; i < m_chunkCount; ++i) {
- b2Free(m_chunks[i].blocks);
- }
- m_chunkCount = 0;
- memset(m_chunks, 0, m_chunkSpace * sizeof(b2Chunk));
- memset(m_freeLists, 0, sizeof(m_freeLists));
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_draw.h"
- b2Draw::b2Draw() {
- m_drawFlags = 0;
- }
- void b2Draw::SetFlags(uint32 flags) {
- m_drawFlags = flags;
- }
- uint32 b2Draw::GetFlags() const {
- return m_drawFlags;
- }
- void b2Draw::AppendFlags(uint32 flags) {
- m_drawFlags |= flags;
- }
- void b2Draw::ClearFlags(uint32 flags) {
- m_drawFlags &= ~flags;
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_math.h"
- const b2Vec2 b2Vec2_zero(0.0f, 0.0f);
- /// Solve A * x = b, where b is a column vector. This is more efficient
- /// than computing the inverse in one-shot cases.
- b2Vec3 b2Mat33::Solve33(const b2Vec3& b) const {
- float det = b2Dot(ex, b2Cross(ey, ez));
- if (det != 0.0f) {
- det = 1.0f / det;
- }
- b2Vec3 x;
- x.x = det * b2Dot(b, b2Cross(ey, ez));
- x.y = det * b2Dot(ex, b2Cross(b, ez));
- x.z = det * b2Dot(ex, b2Cross(ey, b));
- return x;
- }
- /// Solve A * x = b, where b is a column vector. This is more efficient
- /// than computing the inverse in one-shot cases.
- b2Vec2 b2Mat33::Solve22(const b2Vec2& b) const {
- float a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y;
- float det = a11 * a22 - a12 * a21;
- if (det != 0.0f) {
- det = 1.0f / det;
- }
- b2Vec2 x;
- x.x = det * (a22 * b.x - a12 * b.y);
- x.y = det * (a11 * b.y - a21 * b.x);
- return x;
- }
- ///
- void b2Mat33::GetInverse22(b2Mat33* M) const {
- float a = ex.x, b = ey.x, c = ex.y, d = ey.y;
- float det = a * d - b * c;
- if (det != 0.0f) {
- det = 1.0f / det;
- }
- M->ex.x = det * d; M->ey.x = -det * b; M->ex.z = 0.0f;
- M->ex.y = -det * c; M->ey.y = det * a; M->ey.z = 0.0f;
- M->ez.x = 0.0f; M->ez.y = 0.0f; M->ez.z = 0.0f;
- }
- /// Returns the zero matrix if singular.
- void b2Mat33::GetSymInverse33(b2Mat33* M) const {
- float det = b2Dot(ex, b2Cross(ey, ez));
- if (det != 0.0f) {
- det = 1.0f / det;
- }
- float a11 = ex.x, a12 = ey.x, a13 = ez.x;
- float a22 = ey.y, a23 = ez.y;
- float a33 = ez.z;
- M->ex.x = det * (a22 * a33 - a23 * a23);
- M->ex.y = det * (a13 * a23 - a12 * a33);
- M->ex.z = det * (a12 * a23 - a13 * a22);
- M->ey.x = M->ex.y;
- M->ey.y = det * (a11 * a33 - a13 * a13);
- M->ey.z = det * (a13 * a12 - a11 * a23);
- M->ez.x = M->ex.z;
- M->ez.y = M->ey.z;
- M->ez.z = det * (a11 * a22 - a12 * a12);
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #define _CRT_SECURE_NO_WARNINGS
- //#include "box2d/b2_settings.h"
- #include <stdio.h>
- #include <stdarg.h>
- #include <stdlib.h>
- b2Version b2_version = { 2, 4, 0 };
- // Memory allocators. Modify these to use your own allocator.
- void* b2Alloc_Default(int32 size) {
- return malloc(size);
- }
- void b2Free_Default(void* mem) {
- free(mem);
- }
- // You can modify this to use your logging facility.
- void b2Log_Default(const char* string, va_list args) {
- vprintf(string, args);
- }
- FILE* b2_dumpFile = nullptr;
- void b2OpenDump(const char* fileName) {
- b2Assert(b2_dumpFile == nullptr);
- b2_dumpFile = fopen(fileName, "w");
- }
- void b2Dump(const char* string, ...) {
- if (b2_dumpFile == nullptr) {
- return;
- }
- va_list args;
- va_start(args, string);
- vfprintf(b2_dumpFile, string, args);
- va_end(args);
- }
- void b2CloseDump() {
- fclose(b2_dumpFile);
- b2_dumpFile = nullptr;
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_stack_allocator.h"
- //#include "box2d/b2_math.h"
- b2StackAllocator::b2StackAllocator() {
- m_index = 0;
- m_allocation = 0;
- m_maxAllocation = 0;
- m_entryCount = 0;
- }
- b2StackAllocator::~b2StackAllocator() {
- b2Assert(m_index == 0);
- b2Assert(m_entryCount == 0);
- }
- void* b2StackAllocator::Allocate(int32 size) {
- b2Assert(m_entryCount < b2_maxStackEntries);
- b2StackEntry* entry = m_entries + m_entryCount;
- entry->size = size;
- if (m_index + size > b2_stackSize) {
- entry->data = (char*)b2Alloc(size);
- entry->usedMalloc = true;
- } else {
- entry->data = m_data + m_index;
- entry->usedMalloc = false;
- m_index += size;
- }
- m_allocation += size;
- m_maxAllocation = b2Max(m_maxAllocation, m_allocation);
- ++m_entryCount;
- return entry->data;
- }
- void b2StackAllocator::Free(void* p) {
- b2Assert(m_entryCount > 0);
- b2StackEntry* entry = m_entries + m_entryCount - 1;
- b2Assert(p == entry->data);
- if (entry->usedMalloc) {
- b2Free(p);
- } else {
- m_index -= entry->size;
- }
- m_allocation -= entry->size;
- --m_entryCount;
- p = nullptr;
- }
- int32 b2StackAllocator::GetMaxAllocation() const {
- return m_maxAllocation;
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_timer.h"
- #if defined(_WIN32)
- double b2Timer::s_invFrequency = 0.0;
- #ifndef WIN32_LEAN_AND_MEAN
- #define WIN32_LEAN_AND_MEAN
- #endif
- #include <windows.h>
- b2Timer::b2Timer() {
- LARGE_INTEGER largeInteger;
- if (s_invFrequency == 0.0) {
- QueryPerformanceFrequency(&largeInteger);
- s_invFrequency = double(largeInteger.QuadPart);
- if (s_invFrequency > 0.0) {
- s_invFrequency = 1000.0 / s_invFrequency;
- }
- }
- QueryPerformanceCounter(&largeInteger);
- m_start = double(largeInteger.QuadPart);
- }
- void b2Timer::Reset() {
- LARGE_INTEGER largeInteger;
- QueryPerformanceCounter(&largeInteger);
- m_start = double(largeInteger.QuadPart);
- }
- float b2Timer::GetMilliseconds() const {
- LARGE_INTEGER largeInteger;
- QueryPerformanceCounter(&largeInteger);
- double count = double(largeInteger.QuadPart);
- float ms = float(s_invFrequency * (count - m_start));
- return ms;
- }
- #elif defined(__linux__) || defined (__APPLE__)
- #include <sys/time.h>
- b2Timer::b2Timer() {
- Reset();
- }
- void b2Timer::Reset() {
- timeval t;
- gettimeofday(&t, 0);
- m_start_sec = t.tv_sec;
- m_start_usec = t.tv_usec;
- }
- float b2Timer::GetMilliseconds() const {
- timeval t;
- gettimeofday(&t, 0);
- time_t start_sec = m_start_sec;
- suseconds_t start_usec = m_start_usec;
- // http://www.gnu.org/software/libc/manual/html_node/Elapsed-Time.html
- if (t.tv_usec < start_usec) {
- int nsec = (start_usec - t.tv_usec) / 1000000 + 1;
- start_usec -= 1000000 * nsec;
- start_sec += nsec;
- }
- if (t.tv_usec - start_usec > 1000000) {
- int nsec = (t.tv_usec - start_usec) / 1000000;
- start_usec += 1000000 * nsec;
- start_sec -= nsec;
- }
- return 1000.0f * (t.tv_sec - start_sec) + 0.001f * (t.tv_usec - start_usec);
- }
- #else
- b2Timer::b2Timer() {
- }
- void b2Timer::Reset() {
- }
- float b2Timer::GetMilliseconds() const {
- return 0.0f;
- }
- #endif
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_contact.h"
- //#include "box2d/b2_fixture.h"
- //#include "box2d/b2_joint.h"
- //#include "box2d/b2_world.h"
- #include <new>
- b2Body::b2Body(const b2BodyDef* bd, b2World* world) {
- b2Assert(bd->position.IsValid());
- b2Assert(bd->linearVelocity.IsValid());
- b2Assert(b2IsValid(bd->angle));
- b2Assert(b2IsValid(bd->angularVelocity));
- b2Assert(b2IsValid(bd->angularDamping) && bd->angularDamping >= 0.0f);
- b2Assert(b2IsValid(bd->linearDamping) && bd->linearDamping >= 0.0f);
- m_flags = 0;
- if (bd->bullet) {
- m_flags |= e_bulletFlag;
- }
- if (bd->fixedRotation) {
- m_flags |= e_fixedRotationFlag;
- }
- if (bd->allowSleep) {
- m_flags |= e_autoSleepFlag;
- }
- if (bd->awake && bd->type != b2_staticBody) {
- m_flags |= e_awakeFlag;
- }
- if (bd->enabled) {
- m_flags |= e_enabledFlag;
- }
- m_world = world;
- m_xf.p = bd->position;
- m_xf.q.Set(bd->angle);
- m_sweep.localCenter.SetZero();
- m_sweep.c0 = m_xf.p;
- m_sweep.c = m_xf.p;
- m_sweep.a0 = bd->angle;
- m_sweep.a = bd->angle;
- m_sweep.alpha0 = 0.0f;
- m_jointList = nullptr;
- m_contactList = nullptr;
- m_prev = nullptr;
- m_next = nullptr;
- m_linearVelocity = bd->linearVelocity;
- m_angularVelocity = bd->angularVelocity;
- m_linearDamping = bd->linearDamping;
- m_angularDamping = bd->angularDamping;
- m_gravityScale = bd->gravityScale;
- m_force.SetZero();
- m_torque = 0.0f;
- m_sleepTime = 0.0f;
- m_type = bd->type;
- m_mass = 0.0f;
- m_invMass = 0.0f;
- m_I = 0.0f;
- m_invI = 0.0f;
- m_userData = bd->userData;
- m_fixtureList = nullptr;
- m_fixtureCount = 0;
- }
- b2Body::~b2Body() {
- // shapes and joints are destroyed in b2World::Destroy
- }
- void b2Body::SetType(b2BodyType type) {
- b2Assert(m_world->IsLocked() == false);
- if (m_world->IsLocked() == true) {
- return;
- }
- if (m_type == type) {
- return;
- }
- m_type = type;
- ResetMassData();
- if (m_type == b2_staticBody) {
- m_linearVelocity.SetZero();
- m_angularVelocity = 0.0f;
- m_sweep.a0 = m_sweep.a;
- m_sweep.c0 = m_sweep.c;
- m_flags &= ~e_awakeFlag;
- SynchronizeFixtures();
- }
- SetAwake(true);
- m_force.SetZero();
- m_torque = 0.0f;
- // Delete the attached contacts.
- b2ContactEdge* ce = m_contactList;
- while (ce) {
- b2ContactEdge* ce0 = ce;
- ce = ce->next;
- m_world->m_contactManager.Destroy(ce0->contact);
- }
- m_contactList = nullptr;
- // Touch the proxies so that new contacts will be created (when appropriate)
- b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase;
- for (b2Fixture* f = m_fixtureList; f; f = f->m_next) {
- int32 proxyCount = f->m_proxyCount;
- for (int32 i = 0; i < proxyCount; ++i) {
- broadPhase->TouchProxy(f->m_proxies[i].proxyId);
- }
- }
- }
- b2Fixture* b2Body::CreateFixture(const b2FixtureDef* def) {
- b2Assert(m_world->IsLocked() == false);
- if (m_world->IsLocked() == true) {
- return nullptr;
- }
- b2BlockAllocator* allocator = &m_world->m_blockAllocator;
- void* memory = allocator->Allocate(sizeof(b2Fixture));
- b2Fixture* fixture = new (memory) b2Fixture;
- fixture->Create(allocator, this, def);
- if (m_flags & e_enabledFlag) {
- b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase;
- fixture->CreateProxies(broadPhase, m_xf);
- }
- fixture->m_next = m_fixtureList;
- m_fixtureList = fixture;
- ++m_fixtureCount;
- fixture->m_body = this;
- // Adjust mass properties if needed.
- if (fixture->m_density > 0.0f) {
- ResetMassData();
- }
- // Let the world know we have a new fixture. This will cause new contacts
- // to be created at the beginning of the next time step.
- m_world->m_newContacts = true;
- return fixture;
- }
- b2Fixture* b2Body::CreateFixture(const b2Shape* shape, float density) {
- b2FixtureDef def;
- def.shape = shape;
- def.density = density;
- return CreateFixture(&def);
- }
- void b2Body::DestroyFixture(b2Fixture* fixture) {
- if (fixture == NULL) {
- return;
- }
- b2Assert(m_world->IsLocked() == false);
- if (m_world->IsLocked() == true) {
- return;
- }
- b2Assert(fixture->m_body == this);
- // Remove the fixture from this body's singly linked list.
- b2Assert(m_fixtureCount > 0);
- b2Fixture** node = &m_fixtureList;
- bool found = false;
- while (*node != nullptr) {
- if (*node == fixture) {
- *node = fixture->m_next;
- found = true;
- break;
- }
- node = &(*node)->m_next;
- }
- // You tried to remove a shape that is not attached to this body.
- b2Assert(found);
- // Destroy any contacts associated with the fixture.
- b2ContactEdge* edge = m_contactList;
- while (edge) {
- b2Contact* c = edge->contact;
- edge = edge->next;
- b2Fixture* fixtureA = c->GetFixtureA();
- b2Fixture* fixtureB = c->GetFixtureB();
- if (fixture == fixtureA || fixture == fixtureB) {
- // This destroys the contact and removes it from
- // this body's contact list.
- m_world->m_contactManager.Destroy(c);
- }
- }
- b2BlockAllocator* allocator = &m_world->m_blockAllocator;
- if (m_flags & e_enabledFlag) {
- b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase;
- fixture->DestroyProxies(broadPhase);
- }
- fixture->m_body = nullptr;
- fixture->m_next = nullptr;
- fixture->Destroy(allocator);
- fixture->~b2Fixture();
- allocator->Free(fixture, sizeof(b2Fixture));
- --m_fixtureCount;
- // Reset the mass data.
- ResetMassData();
- }
- void b2Body::ResetMassData() {
- // Compute mass data from shapes. Each shape has its own density.
- m_mass = 0.0f;
- m_invMass = 0.0f;
- m_I = 0.0f;
- m_invI = 0.0f;
- m_sweep.localCenter.SetZero();
- // Static and kinematic bodies have zero mass.
- if (m_type == b2_staticBody || m_type == b2_kinematicBody) {
- m_sweep.c0 = m_xf.p;
- m_sweep.c = m_xf.p;
- m_sweep.a0 = m_sweep.a;
- return;
- }
- b2Assert(m_type == b2_dynamicBody);
- // Accumulate mass over all fixtures.
- b2Vec2 localCenter = b2Vec2_zero;
- for (b2Fixture* f = m_fixtureList; f; f = f->m_next) {
- if (f->m_density == 0.0f) {
- continue;
- }
- b2MassData massData;
- f->GetMassData(&massData);
- m_mass += massData.mass;
- localCenter += massData.mass * massData.center;
- m_I += massData.I;
- }
- // Compute center of mass.
- if (m_mass > 0.0f) {
- m_invMass = 1.0f / m_mass;
- localCenter *= m_invMass;
- }
- if (m_I > 0.0f && (m_flags & e_fixedRotationFlag) == 0) {
- // Center the inertia about the center of mass.
- m_I -= m_mass * b2Dot(localCenter, localCenter);
- b2Assert(m_I > 0.0f);
- m_invI = 1.0f / m_I;
- } else {
- m_I = 0.0f;
- m_invI = 0.0f;
- }
- // Move center of mass.
- b2Vec2 oldCenter = m_sweep.c;
- m_sweep.localCenter = localCenter;
- m_sweep.c0 = m_sweep.c = b2Mul(m_xf, m_sweep.localCenter);
- // Update center of mass velocity.
- m_linearVelocity += b2Cross(m_angularVelocity, m_sweep.c - oldCenter);
- }
- void b2Body::SetMassData(const b2MassData* massData) {
- b2Assert(m_world->IsLocked() == false);
- if (m_world->IsLocked() == true) {
- return;
- }
- if (m_type != b2_dynamicBody) {
- return;
- }
- m_invMass = 0.0f;
- m_I = 0.0f;
- m_invI = 0.0f;
- m_mass = massData->mass;
- if (m_mass <= 0.0f) {
- m_mass = 1.0f;
- }
- m_invMass = 1.0f / m_mass;
- if (massData->I > 0.0f && (m_flags & b2Body::e_fixedRotationFlag) == 0) {
- m_I = massData->I - m_mass * b2Dot(massData->center, massData->center);
- b2Assert(m_I > 0.0f);
- m_invI = 1.0f / m_I;
- }
- // Move center of mass.
- b2Vec2 oldCenter = m_sweep.c;
- m_sweep.localCenter = massData->center;
- m_sweep.c0 = m_sweep.c = b2Mul(m_xf, m_sweep.localCenter);
- // Update center of mass velocity.
- m_linearVelocity += b2Cross(m_angularVelocity, m_sweep.c - oldCenter);
- }
- bool b2Body::ShouldCollide(const b2Body* other) const {
- // At least one body should be dynamic.
- if (m_type != b2_dynamicBody && other->m_type != b2_dynamicBody) {
- return false;
- }
- // Does a joint prevent collision?
- for (b2JointEdge* jn = m_jointList; jn; jn = jn->next) {
- if (jn->other == other) {
- if (jn->joint->m_collideConnected == false) {
- return false;
- }
- }
- }
- return true;
- }
- void b2Body::SetTransform(const b2Vec2& position, float angle) {
- b2Assert(m_world->IsLocked() == false);
- if (m_world->IsLocked() == true) {
- return;
- }
- m_xf.q.Set(angle);
- m_xf.p = position;
- m_sweep.c = b2Mul(m_xf, m_sweep.localCenter);
- m_sweep.a = angle;
- m_sweep.c0 = m_sweep.c;
- m_sweep.a0 = angle;
- b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase;
- for (b2Fixture* f = m_fixtureList; f; f = f->m_next) {
- f->Synchronize(broadPhase, m_xf, m_xf);
- }
- // Check for new contacts the next step
- m_world->m_newContacts = true;
- }
- void b2Body::SynchronizeFixtures() {
- b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase;
- if (m_flags & b2Body::e_awakeFlag) {
- b2Transform xf1;
- xf1.q.Set(m_sweep.a0);
- xf1.p = m_sweep.c0 - b2Mul(xf1.q, m_sweep.localCenter);
- for (b2Fixture* f = m_fixtureList; f; f = f->m_next) {
- f->Synchronize(broadPhase, xf1, m_xf);
- }
- } else {
- for (b2Fixture* f = m_fixtureList; f; f = f->m_next) {
- f->Synchronize(broadPhase, m_xf, m_xf);
- }
- }
- }
- void b2Body::SetEnabled(bool flag) {
- b2Assert(m_world->IsLocked() == false);
- if (flag == IsEnabled()) {
- return;
- }
- if (flag) {
- m_flags |= e_enabledFlag;
- // Create all proxies.
- b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase;
- for (b2Fixture* f = m_fixtureList; f; f = f->m_next) {
- f->CreateProxies(broadPhase, m_xf);
- }
- // Contacts are created at the beginning of the next
- m_world->m_newContacts = true;
- } else {
- m_flags &= ~e_enabledFlag;
- // Destroy all proxies.
- b2BroadPhase* broadPhase = &m_world->m_contactManager.m_broadPhase;
- for (b2Fixture* f = m_fixtureList; f; f = f->m_next) {
- f->DestroyProxies(broadPhase);
- }
- // Destroy the attached contacts.
- b2ContactEdge* ce = m_contactList;
- while (ce) {
- b2ContactEdge* ce0 = ce;
- ce = ce->next;
- m_world->m_contactManager.Destroy(ce0->contact);
- }
- m_contactList = nullptr;
- }
- }
- void b2Body::SetFixedRotation(bool flag) {
- bool status = (m_flags & e_fixedRotationFlag) == e_fixedRotationFlag;
- if (status == flag) {
- return;
- }
- if (flag) {
- m_flags |= e_fixedRotationFlag;
- } else {
- m_flags &= ~e_fixedRotationFlag;
- }
- m_angularVelocity = 0.0f;
- ResetMassData();
- }
- void b2Body::Dump() {
- int32 bodyIndex = m_islandIndex;
- // %.9g is sufficient to save and load the same value using text
- // FLT_DECIMAL_DIG == 9
- b2Dump("{\n");
- b2Dump(" b2BodyDef bd;\n");
- b2Dump(" bd.type = b2BodyType(%d);\n", m_type);
- b2Dump(" bd.position.Set(%.9g, %.9g);\n", m_xf.p.x, m_xf.p.y);
- b2Dump(" bd.angle = %.9g;\n", m_sweep.a);
- b2Dump(" bd.linearVelocity.Set(%.9g, %.9g);\n", m_linearVelocity.x, m_linearVelocity.y);
- b2Dump(" bd.angularVelocity = %.9g;\n", m_angularVelocity);
- b2Dump(" bd.linearDamping = %.9g;\n", m_linearDamping);
- b2Dump(" bd.angularDamping = %.9g;\n", m_angularDamping);
- b2Dump(" bd.allowSleep = bool(%d);\n", m_flags & e_autoSleepFlag);
- b2Dump(" bd.awake = bool(%d);\n", m_flags & e_awakeFlag);
- b2Dump(" bd.fixedRotation = bool(%d);\n", m_flags & e_fixedRotationFlag);
- b2Dump(" bd.bullet = bool(%d);\n", m_flags & e_bulletFlag);
- b2Dump(" bd.enabled = bool(%d);\n", m_flags & e_enabledFlag);
- b2Dump(" bd.gravityScale = %.9g;\n", m_gravityScale);
- b2Dump(" bodies[%d] = m_world->CreateBody(&bd);\n", m_islandIndex);
- b2Dump("\n");
- for (b2Fixture* f = m_fixtureList; f; f = f->m_next) {
- b2Dump(" {\n");
- f->Dump(bodyIndex);
- b2Dump(" }\n");
- }
- b2Dump("}\n");
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "b2_chain_circle_contact.h"
- //#include "box2d/b2_block_allocator.h"
- //#include "box2d/b2_fixture.h"
- //#include "box2d/b2_chain_shape.h"
- //#include "box2d/b2_edge_shape.h"
- #include <new>
- b2Contact* b2ChainAndCircleContact::Create(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator) {
- void* mem = allocator->Allocate(sizeof(b2ChainAndCircleContact));
- return new (mem) b2ChainAndCircleContact(fixtureA, indexA, fixtureB, indexB);
- }
- void b2ChainAndCircleContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) {
- ((b2ChainAndCircleContact*)contact)->~b2ChainAndCircleContact();
- allocator->Free(contact, sizeof(b2ChainAndCircleContact));
- }
- b2ChainAndCircleContact::b2ChainAndCircleContact(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB)
- : b2Contact(fixtureA, indexA, fixtureB, indexB) {
- b2Assert(m_fixtureA->GetType() == b2Shape::e_chain);
- b2Assert(m_fixtureB->GetType() == b2Shape::e_circle);
- }
- void b2ChainAndCircleContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) {
- b2ChainShape* chain = (b2ChainShape*)m_fixtureA->GetShape();
- b2EdgeShape edge;
- chain->GetChildEdge(&edge, m_indexA);
- b2CollideEdgeAndCircle(manifold, &edge, xfA,
- (b2CircleShape*)m_fixtureB->GetShape(), xfB);
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "b2_chain_polygon_contact.h"
- //#include "box2d/b2_block_allocator.h"
- //#include "box2d/b2_fixture.h"
- //#include "box2d/b2_chain_shape.h"
- //#include "box2d/b2_edge_shape.h"
- #include <new>
- b2Contact* b2ChainAndPolygonContact::Create(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator) {
- void* mem = allocator->Allocate(sizeof(b2ChainAndPolygonContact));
- return new (mem) b2ChainAndPolygonContact(fixtureA, indexA, fixtureB, indexB);
- }
- void b2ChainAndPolygonContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) {
- ((b2ChainAndPolygonContact*)contact)->~b2ChainAndPolygonContact();
- allocator->Free(contact, sizeof(b2ChainAndPolygonContact));
- }
- b2ChainAndPolygonContact::b2ChainAndPolygonContact(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB)
- : b2Contact(fixtureA, indexA, fixtureB, indexB) {
- b2Assert(m_fixtureA->GetType() == b2Shape::e_chain);
- b2Assert(m_fixtureB->GetType() == b2Shape::e_polygon);
- }
- void b2ChainAndPolygonContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) {
- b2ChainShape* chain = (b2ChainShape*)m_fixtureA->GetShape();
- b2EdgeShape edge;
- chain->GetChildEdge(&edge, m_indexA);
- b2CollideEdgeAndPolygon(manifold, &edge, xfA,
- (b2PolygonShape*)m_fixtureB->GetShape(), xfB);
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "b2_circle_contact.h"
- //#include "box2d/b2_block_allocator.h"
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_fixture.h"
- //#include "box2d/b2_time_of_impact.h"
- //#include "box2d/b2_world_callbacks.h"
- #include <new>
- b2Contact* b2CircleContact::Create(b2Fixture* fixtureA, int32, b2Fixture* fixtureB, int32, b2BlockAllocator* allocator) {
- void* mem = allocator->Allocate(sizeof(b2CircleContact));
- return new (mem) b2CircleContact(fixtureA, fixtureB);
- }
- void b2CircleContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) {
- ((b2CircleContact*)contact)->~b2CircleContact();
- allocator->Free(contact, sizeof(b2CircleContact));
- }
- b2CircleContact::b2CircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB)
- : b2Contact(fixtureA, 0, fixtureB, 0) {
- b2Assert(m_fixtureA->GetType() == b2Shape::e_circle);
- b2Assert(m_fixtureB->GetType() == b2Shape::e_circle);
- }
- void b2CircleContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) {
- b2CollideCircles(manifold,
- (b2CircleShape*)m_fixtureA->GetShape(), xfA,
- (b2CircleShape*)m_fixtureB->GetShape(), xfB);
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "b2_chain_circle_contact.h"
- //#include "b2_chain_polygon_contact.h"
- //#include "b2_circle_contact.h"
- //#include "b2_contact_solver.h"
- //#include "b2_edge_circle_contact.h"
- //#include "b2_edge_polygon_contact.h"
- //#include "b2_polygon_circle_contact.h"
- //#include "b2_polygon_contact.h"
- //#include "box2d/b2_contact.h"
- //#include "box2d/b2_block_allocator.h"
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_collision.h"
- //#include "box2d/b2_fixture.h"
- //#include "box2d/b2_shape.h"
- //#include "box2d/b2_time_of_impact.h"
- //#include "box2d/b2_world.h"
- b2ContactRegister b2Contact::s_registers[b2Shape::e_typeCount][b2Shape::e_typeCount];
- bool b2Contact::s_initialized = false;
- void b2Contact::InitializeRegisters() {
- AddType(b2CircleContact::Create, b2CircleContact::Destroy, b2Shape::e_circle, b2Shape::e_circle);
- AddType(b2PolygonAndCircleContact::Create, b2PolygonAndCircleContact::Destroy, b2Shape::e_polygon, b2Shape::e_circle);
- AddType(b2PolygonContact::Create, b2PolygonContact::Destroy, b2Shape::e_polygon, b2Shape::e_polygon);
- AddType(b2EdgeAndCircleContact::Create, b2EdgeAndCircleContact::Destroy, b2Shape::e_edge, b2Shape::e_circle);
- AddType(b2EdgeAndPolygonContact::Create, b2EdgeAndPolygonContact::Destroy, b2Shape::e_edge, b2Shape::e_polygon);
- AddType(b2ChainAndCircleContact::Create, b2ChainAndCircleContact::Destroy, b2Shape::e_chain, b2Shape::e_circle);
- AddType(b2ChainAndPolygonContact::Create, b2ChainAndPolygonContact::Destroy, b2Shape::e_chain, b2Shape::e_polygon);
- }
- void b2Contact::AddType(b2ContactCreateFcn* createFcn, b2ContactDestroyFcn* destoryFcn,
- b2Shape::Type type1, b2Shape::Type type2) {
- b2Assert(0 <= type1 && type1 < b2Shape::e_typeCount);
- b2Assert(0 <= type2 && type2 < b2Shape::e_typeCount);
- s_registers[type1][type2].createFcn = createFcn;
- s_registers[type1][type2].destroyFcn = destoryFcn;
- s_registers[type1][type2].primary = true;
- if (type1 != type2) {
- s_registers[type2][type1].createFcn = createFcn;
- s_registers[type2][type1].destroyFcn = destoryFcn;
- s_registers[type2][type1].primary = false;
- }
- }
- b2Contact* b2Contact::Create(b2Fixture* fixtureA, int32 indexA, b2Fixture* fixtureB, int32 indexB, b2BlockAllocator* allocator) {
- if (s_initialized == false) {
- InitializeRegisters();
- s_initialized = true;
- }
- b2Shape::Type type1 = fixtureA->GetType();
- b2Shape::Type type2 = fixtureB->GetType();
- b2Assert(0 <= type1 && type1 < b2Shape::e_typeCount);
- b2Assert(0 <= type2 && type2 < b2Shape::e_typeCount);
- b2ContactCreateFcn* createFcn = s_registers[type1][type2].createFcn;
- if (createFcn) {
- if (s_registers[type1][type2].primary) {
- return createFcn(fixtureA, indexA, fixtureB, indexB, allocator);
- } else {
- return createFcn(fixtureB, indexB, fixtureA, indexA, allocator);
- }
- } else {
- return nullptr;
- }
- }
- void b2Contact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) {
- b2Assert(s_initialized == true);
- b2Fixture* fixtureA = contact->m_fixtureA;
- b2Fixture* fixtureB = contact->m_fixtureB;
- if (contact->m_manifold.pointCount > 0 &&
- fixtureA->IsSensor() == false &&
- fixtureB->IsSensor() == false) {
- fixtureA->GetBody()->SetAwake(true);
- fixtureB->GetBody()->SetAwake(true);
- }
- b2Shape::Type typeA = fixtureA->GetType();
- b2Shape::Type typeB = fixtureB->GetType();
- b2Assert(0 <= typeA && typeA < b2Shape::e_typeCount);
- b2Assert(0 <= typeB && typeB < b2Shape::e_typeCount);
- b2ContactDestroyFcn* destroyFcn = s_registers[typeA][typeB].destroyFcn;
- destroyFcn(contact, allocator);
- }
- b2Contact::b2Contact(b2Fixture* fA, int32 indexA, b2Fixture* fB, int32 indexB) {
- m_flags = e_enabledFlag;
- m_fixtureA = fA;
- m_fixtureB = fB;
- m_indexA = indexA;
- m_indexB = indexB;
- m_manifold.pointCount = 0;
- m_prev = nullptr;
- m_next = nullptr;
- m_nodeA.contact = nullptr;
- m_nodeA.prev = nullptr;
- m_nodeA.next = nullptr;
- m_nodeA.other = nullptr;
- m_nodeB.contact = nullptr;
- m_nodeB.prev = nullptr;
- m_nodeB.next = nullptr;
- m_nodeB.other = nullptr;
- m_toiCount = 0;
- m_friction = b2MixFriction(m_fixtureA->m_friction, m_fixtureB->m_friction);
- m_restitution = b2MixRestitution(m_fixtureA->m_restitution, m_fixtureB->m_restitution);
- m_restitutionThreshold = b2MixRestitutionThreshold(m_fixtureA->m_restitutionThreshold, m_fixtureB->m_restitutionThreshold);
- m_tangentSpeed = 0.0f;
- }
- // Update the contact manifold and touching status.
- // Note: do not assume the fixture AABBs are overlapping or are valid.
- void b2Contact::Update(b2ContactListener* listener) {
- b2Manifold oldManifold = m_manifold;
- // Re-enable this contact.
- m_flags |= e_enabledFlag;
- bool touching = false;
- bool wasTouching = (m_flags & e_touchingFlag) == e_touchingFlag;
- bool sensorA = m_fixtureA->IsSensor();
- bool sensorB = m_fixtureB->IsSensor();
- bool sensor = sensorA || sensorB;
- b2Body* bodyA = m_fixtureA->GetBody();
- b2Body* bodyB = m_fixtureB->GetBody();
- const b2Transform& xfA = bodyA->GetTransform();
- const b2Transform& xfB = bodyB->GetTransform();
- // Is this contact a sensor?
- if (sensor) {
- const b2Shape* shapeA = m_fixtureA->GetShape();
- const b2Shape* shapeB = m_fixtureB->GetShape();
- touching = b2TestOverlap(shapeA, m_indexA, shapeB, m_indexB, xfA, xfB);
- // Sensors don't generate manifolds.
- m_manifold.pointCount = 0;
- } else {
- Evaluate(&m_manifold, xfA, xfB);
- touching = m_manifold.pointCount > 0;
- // Match old contact ids to new contact ids and copy the
- // stored impulses to warm start the solver.
- for (int32 i = 0; i < m_manifold.pointCount; ++i) {
- b2ManifoldPoint* mp2 = m_manifold.points + i;
- mp2->normalImpulse = 0.0f;
- mp2->tangentImpulse = 0.0f;
- b2ContactID id2 = mp2->id;
- for (int32 j = 0; j < oldManifold.pointCount; ++j) {
- b2ManifoldPoint* mp1 = oldManifold.points + j;
- if (mp1->id.key == id2.key) {
- mp2->normalImpulse = mp1->normalImpulse;
- mp2->tangentImpulse = mp1->tangentImpulse;
- break;
- }
- }
- }
- if (touching != wasTouching) {
- bodyA->SetAwake(true);
- bodyB->SetAwake(true);
- }
- }
- if (touching) {
- m_flags |= e_touchingFlag;
- } else {
- m_flags &= ~e_touchingFlag;
- }
- if (wasTouching == false && touching == true && listener) {
- listener->BeginContact(this);
- }
- if (wasTouching == true && touching == false && listener) {
- listener->EndContact(this);
- }
- if (sensor == false && touching && listener) {
- listener->PreSolve(this, &oldManifold);
- }
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_contact.h"
- //#include "box2d/b2_contact_manager.h"
- //#include "box2d/b2_fixture.h"
- //#include "box2d/b2_world_callbacks.h"
- b2ContactFilter b2_defaultFilter;
- b2ContactListener b2_defaultListener;
- b2ContactManager::b2ContactManager() {
- m_contactList = nullptr;
- m_contactCount = 0;
- m_contactFilter = &b2_defaultFilter;
- m_contactListener = &b2_defaultListener;
- m_allocator = nullptr;
- }
- void b2ContactManager::Destroy(b2Contact* c) {
- b2Fixture* fixtureA = c->GetFixtureA();
- b2Fixture* fixtureB = c->GetFixtureB();
- b2Body* bodyA = fixtureA->GetBody();
- b2Body* bodyB = fixtureB->GetBody();
- if (m_contactListener && c->IsTouching()) {
- m_contactListener->EndContact(c);
- }
- // Remove from the world.
- if (c->m_prev) {
- c->m_prev->m_next = c->m_next;
- }
- if (c->m_next) {
- c->m_next->m_prev = c->m_prev;
- }
- if (c == m_contactList) {
- m_contactList = c->m_next;
- }
- // Remove from body 1
- if (c->m_nodeA.prev) {
- c->m_nodeA.prev->next = c->m_nodeA.next;
- }
- if (c->m_nodeA.next) {
- c->m_nodeA.next->prev = c->m_nodeA.prev;
- }
- if (&c->m_nodeA == bodyA->m_contactList) {
- bodyA->m_contactList = c->m_nodeA.next;
- }
- // Remove from body 2
- if (c->m_nodeB.prev) {
- c->m_nodeB.prev->next = c->m_nodeB.next;
- }
- if (c->m_nodeB.next) {
- c->m_nodeB.next->prev = c->m_nodeB.prev;
- }
- if (&c->m_nodeB == bodyB->m_contactList) {
- bodyB->m_contactList = c->m_nodeB.next;
- }
- // Call the factory.
- b2Contact::Destroy(c, m_allocator);
- --m_contactCount;
- }
- // This is the top level collision call for the time step. Here
- // all the narrow phase collision is processed for the world
- // contact list.
- void b2ContactManager::Collide() {
- // Update awake contacts.
- b2Contact* c = m_contactList;
- while (c) {
- b2Fixture* fixtureA = c->GetFixtureA();
- b2Fixture* fixtureB = c->GetFixtureB();
- int32 indexA = c->GetChildIndexA();
- int32 indexB = c->GetChildIndexB();
- b2Body* bodyA = fixtureA->GetBody();
- b2Body* bodyB = fixtureB->GetBody();
- // Is this contact flagged for filtering?
- if (c->m_flags & b2Contact::e_filterFlag) {
- // Should these bodies collide?
- if (bodyB->ShouldCollide(bodyA) == false) {
- b2Contact* cNuke = c;
- c = cNuke->GetNext();
- Destroy(cNuke);
- continue;
- }
- // Check user filtering.
- if (m_contactFilter && m_contactFilter->ShouldCollide(fixtureA, fixtureB) == false) {
- b2Contact* cNuke = c;
- c = cNuke->GetNext();
- Destroy(cNuke);
- continue;
- }
- // Clear the filtering flag.
- c->m_flags &= ~b2Contact::e_filterFlag;
- }
- bool activeA = bodyA->IsAwake() && bodyA->m_type != b2_staticBody;
- bool activeB = bodyB->IsAwake() && bodyB->m_type != b2_staticBody;
- // At least one body must be awake and it must be dynamic or kinematic.
- if (activeA == false && activeB == false) {
- c = c->GetNext();
- continue;
- }
- int32 proxyIdA = fixtureA->m_proxies[indexA].proxyId;
- int32 proxyIdB = fixtureB->m_proxies[indexB].proxyId;
- bool overlap = m_broadPhase.TestOverlap(proxyIdA, proxyIdB);
- // Here we destroy contacts that cease to overlap in the broad-phase.
- if (overlap == false) {
- b2Contact* cNuke = c;
- c = cNuke->GetNext();
- Destroy(cNuke);
- continue;
- }
- // The contact persists.
- c->Update(m_contactListener);
- c = c->GetNext();
- }
- }
- void b2ContactManager::FindNewContacts() {
- m_broadPhase.UpdatePairs(this);
- }
- void b2ContactManager::AddPair(void* proxyUserDataA, void* proxyUserDataB) {
- b2FixtureProxy* proxyA = (b2FixtureProxy*)proxyUserDataA;
- b2FixtureProxy* proxyB = (b2FixtureProxy*)proxyUserDataB;
- b2Fixture* fixtureA = proxyA->fixture;
- b2Fixture* fixtureB = proxyB->fixture;
- int32 indexA = proxyA->childIndex;
- int32 indexB = proxyB->childIndex;
- b2Body* bodyA = fixtureA->GetBody();
- b2Body* bodyB = fixtureB->GetBody();
- // Are the fixtures on the same body?
- if (bodyA == bodyB) {
- return;
- }
- // TODO_ERIN use a hash table to remove a potential bottleneck when both
- // bodies have a lot of contacts.
- // Does a contact already exist?
- b2ContactEdge* edge = bodyB->GetContactList();
- while (edge) {
- if (edge->other == bodyA) {
- b2Fixture* fA = edge->contact->GetFixtureA();
- b2Fixture* fB = edge->contact->GetFixtureB();
- int32 iA = edge->contact->GetChildIndexA();
- int32 iB = edge->contact->GetChildIndexB();
- if (fA == fixtureA && fB == fixtureB && iA == indexA && iB == indexB) {
- // A contact already exists.
- return;
- }
- if (fA == fixtureB && fB == fixtureA && iA == indexB && iB == indexA) {
- // A contact already exists.
- return;
- }
- }
- edge = edge->next;
- }
- // Does a joint override collision? Is at least one body dynamic?
- if (bodyB->ShouldCollide(bodyA) == false) {
- return;
- }
- // Check user filtering.
- if (m_contactFilter && m_contactFilter->ShouldCollide(fixtureA, fixtureB) == false) {
- return;
- }
- // Call the factory.
- b2Contact* c = b2Contact::Create(fixtureA, indexA, fixtureB, indexB, m_allocator);
- if (c == nullptr) {
- return;
- }
- // Contact creation may swap fixtures.
- fixtureA = c->GetFixtureA();
- fixtureB = c->GetFixtureB();
- indexA = c->GetChildIndexA();
- indexB = c->GetChildIndexB();
- bodyA = fixtureA->GetBody();
- bodyB = fixtureB->GetBody();
- // Insert into the world.
- c->m_prev = nullptr;
- c->m_next = m_contactList;
- if (m_contactList != nullptr) {
- m_contactList->m_prev = c;
- }
- m_contactList = c;
- // Connect to island graph.
- // Connect to body A
- c->m_nodeA.contact = c;
- c->m_nodeA.other = bodyB;
- c->m_nodeA.prev = nullptr;
- c->m_nodeA.next = bodyA->m_contactList;
- if (bodyA->m_contactList != nullptr) {
- bodyA->m_contactList->prev = &c->m_nodeA;
- }
- bodyA->m_contactList = &c->m_nodeA;
- // Connect to body B
- c->m_nodeB.contact = c;
- c->m_nodeB.other = bodyA;
- c->m_nodeB.prev = nullptr;
- c->m_nodeB.next = bodyB->m_contactList;
- if (bodyB->m_contactList != nullptr) {
- bodyB->m_contactList->prev = &c->m_nodeB;
- }
- bodyB->m_contactList = &c->m_nodeB;
- ++m_contactCount;
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "b2_contact_solver.h"
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_contact.h"
- //#include "box2d/b2_fixture.h"
- //#include "box2d/b2_stack_allocator.h"
- //#include "box2d/b2_world.h"
- // Solver debugging is normally disabled because the block solver sometimes has to deal with a poorly conditioned effective mass matrix.
- #define B2_DEBUG_SOLVER 0
- B2_API bool g_blockSolve = true;
- struct b2ContactPositionConstraint {
- b2Vec2 localPoints[b2_maxManifoldPoints];
- b2Vec2 localNormal;
- b2Vec2 localPoint;
- int32 indexA;
- int32 indexB;
- float invMassA, invMassB;
- b2Vec2 localCenterA, localCenterB;
- float invIA, invIB;
- b2Manifold::Type type;
- float radiusA, radiusB;
- int32 pointCount;
- };
- b2ContactSolver::b2ContactSolver(b2ContactSolverDef* def) {
- m_step = def->step;
- m_allocator = def->allocator;
- m_count = def->count;
- m_positionConstraints = (b2ContactPositionConstraint*)m_allocator->Allocate(m_count * sizeof(b2ContactPositionConstraint));
- m_velocityConstraints = (b2ContactVelocityConstraint*)m_allocator->Allocate(m_count * sizeof(b2ContactVelocityConstraint));
- m_positions = def->positions;
- m_velocities = def->velocities;
- m_contacts = def->contacts;
- // Initialize position independent portions of the constraints.
- for (int32 i = 0; i < m_count; ++i) {
- b2Contact* contact = m_contacts[i];
- b2Fixture* fixtureA = contact->m_fixtureA;
- b2Fixture* fixtureB = contact->m_fixtureB;
- b2Shape* shapeA = fixtureA->GetShape();
- b2Shape* shapeB = fixtureB->GetShape();
- float radiusA = shapeA->m_radius;
- float radiusB = shapeB->m_radius;
- b2Body* bodyA = fixtureA->GetBody();
- b2Body* bodyB = fixtureB->GetBody();
- b2Manifold* manifold = contact->GetManifold();
- int32 pointCount = manifold->pointCount;
- b2Assert(pointCount > 0);
- b2ContactVelocityConstraint* vc = m_velocityConstraints + i;
- vc->friction = contact->m_friction;
- vc->restitution = contact->m_restitution;
- vc->threshold = contact->m_restitutionThreshold;
- vc->tangentSpeed = contact->m_tangentSpeed;
- vc->indexA = bodyA->m_islandIndex;
- vc->indexB = bodyB->m_islandIndex;
- vc->invMassA = bodyA->m_invMass;
- vc->invMassB = bodyB->m_invMass;
- vc->invIA = bodyA->m_invI;
- vc->invIB = bodyB->m_invI;
- vc->contactIndex = i;
- vc->pointCount = pointCount;
- vc->K.SetZero();
- vc->normalMass.SetZero();
- b2ContactPositionConstraint* pc = m_positionConstraints + i;
- pc->indexA = bodyA->m_islandIndex;
- pc->indexB = bodyB->m_islandIndex;
- pc->invMassA = bodyA->m_invMass;
- pc->invMassB = bodyB->m_invMass;
- pc->localCenterA = bodyA->m_sweep.localCenter;
- pc->localCenterB = bodyB->m_sweep.localCenter;
- pc->invIA = bodyA->m_invI;
- pc->invIB = bodyB->m_invI;
- pc->localNormal = manifold->localNormal;
- pc->localPoint = manifold->localPoint;
- pc->pointCount = pointCount;
- pc->radiusA = radiusA;
- pc->radiusB = radiusB;
- pc->type = manifold->type;
- for (int32 j = 0; j < pointCount; ++j) {
- b2ManifoldPoint* cp = manifold->points + j;
- b2VelocityConstraintPoint* vcp = vc->points + j;
- if (m_step.warmStarting) {
- vcp->normalImpulse = m_step.dtRatio * cp->normalImpulse;
- vcp->tangentImpulse = m_step.dtRatio * cp->tangentImpulse;
- } else {
- vcp->normalImpulse = 0.0f;
- vcp->tangentImpulse = 0.0f;
- }
- vcp->rA.SetZero();
- vcp->rB.SetZero();
- vcp->normalMass = 0.0f;
- vcp->tangentMass = 0.0f;
- vcp->velocityBias = 0.0f;
- pc->localPoints[j] = cp->localPoint;
- }
- }
- }
- b2ContactSolver::~b2ContactSolver() {
- m_allocator->Free(m_velocityConstraints);
- m_allocator->Free(m_positionConstraints);
- }
- // Initialize position dependent portions of the velocity constraints.
- void b2ContactSolver::InitializeVelocityConstraints() {
- for (int32 i = 0; i < m_count; ++i) {
- b2ContactVelocityConstraint* vc = m_velocityConstraints + i;
- b2ContactPositionConstraint* pc = m_positionConstraints + i;
- float radiusA = pc->radiusA;
- float radiusB = pc->radiusB;
- b2Manifold* manifold = m_contacts[vc->contactIndex]->GetManifold();
- int32 indexA = vc->indexA;
- int32 indexB = vc->indexB;
- float mA = vc->invMassA;
- float mB = vc->invMassB;
- float iA = vc->invIA;
- float iB = vc->invIB;
- b2Vec2 localCenterA = pc->localCenterA;
- b2Vec2 localCenterB = pc->localCenterB;
- b2Vec2 cA = m_positions[indexA].c;
- float aA = m_positions[indexA].a;
- b2Vec2 vA = m_velocities[indexA].v;
- float wA = m_velocities[indexA].w;
- b2Vec2 cB = m_positions[indexB].c;
- float aB = m_positions[indexB].a;
- b2Vec2 vB = m_velocities[indexB].v;
- float wB = m_velocities[indexB].w;
- b2Assert(manifold->pointCount > 0);
- b2Transform xfA, xfB;
- xfA.q.Set(aA);
- xfB.q.Set(aB);
- xfA.p = cA - b2Mul(xfA.q, localCenterA);
- xfB.p = cB - b2Mul(xfB.q, localCenterB);
- b2WorldManifold worldManifold;
- worldManifold.Initialize(manifold, xfA, radiusA, xfB, radiusB);
- vc->normal = worldManifold.normal;
- int32 pointCount = vc->pointCount;
- for (int32 j = 0; j < pointCount; ++j) {
- b2VelocityConstraintPoint* vcp = vc->points + j;
- vcp->rA = worldManifold.points[j] - cA;
- vcp->rB = worldManifold.points[j] - cB;
- float rnA = b2Cross(vcp->rA, vc->normal);
- float rnB = b2Cross(vcp->rB, vc->normal);
- float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB;
- vcp->normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f;
- b2Vec2 tangent = b2Cross(vc->normal, 1.0f);
- float rtA = b2Cross(vcp->rA, tangent);
- float rtB = b2Cross(vcp->rB, tangent);
- float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB;
- vcp->tangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f;
- // Setup a velocity bias for restitution.
- vcp->velocityBias = 0.0f;
- float vRel = b2Dot(vc->normal, vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA));
- if (vRel < -vc->threshold) {
- vcp->velocityBias = -vc->restitution * vRel;
- }
- }
- // If we have two points, then prepare the block solver.
- if (vc->pointCount == 2 && g_blockSolve) {
- b2VelocityConstraintPoint* vcp1 = vc->points + 0;
- b2VelocityConstraintPoint* vcp2 = vc->points + 1;
- float rn1A = b2Cross(vcp1->rA, vc->normal);
- float rn1B = b2Cross(vcp1->rB, vc->normal);
- float rn2A = b2Cross(vcp2->rA, vc->normal);
- float rn2B = b2Cross(vcp2->rB, vc->normal);
- float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B;
- float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B;
- float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B;
- // Ensure a reasonable condition number.
- const float k_maxConditionNumber = 1000.0f;
- if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) {
- // K is safe to invert.
- vc->K.ex.Set(k11, k12);
- vc->K.ey.Set(k12, k22);
- vc->normalMass = vc->K.GetInverse();
- } else {
- // The constraints are redundant, just use one.
- // TODO_ERIN use deepest?
- vc->pointCount = 1;
- }
- }
- }
- }
- void b2ContactSolver::WarmStart() {
- // Warm start.
- for (int32 i = 0; i < m_count; ++i) {
- b2ContactVelocityConstraint* vc = m_velocityConstraints + i;
- int32 indexA = vc->indexA;
- int32 indexB = vc->indexB;
- float mA = vc->invMassA;
- float iA = vc->invIA;
- float mB = vc->invMassB;
- float iB = vc->invIB;
- int32 pointCount = vc->pointCount;
- b2Vec2 vA = m_velocities[indexA].v;
- float wA = m_velocities[indexA].w;
- b2Vec2 vB = m_velocities[indexB].v;
- float wB = m_velocities[indexB].w;
- b2Vec2 normal = vc->normal;
- b2Vec2 tangent = b2Cross(normal, 1.0f);
- for (int32 j = 0; j < pointCount; ++j) {
- b2VelocityConstraintPoint* vcp = vc->points + j;
- b2Vec2 P = vcp->normalImpulse * normal + vcp->tangentImpulse * tangent;
- wA -= iA * b2Cross(vcp->rA, P);
- vA -= mA * P;
- wB += iB * b2Cross(vcp->rB, P);
- vB += mB * P;
- }
- m_velocities[indexA].v = vA;
- m_velocities[indexA].w = wA;
- m_velocities[indexB].v = vB;
- m_velocities[indexB].w = wB;
- }
- }
- void b2ContactSolver::SolveVelocityConstraints() {
- for (int32 i = 0; i < m_count; ++i) {
- b2ContactVelocityConstraint* vc = m_velocityConstraints + i;
- int32 indexA = vc->indexA;
- int32 indexB = vc->indexB;
- float mA = vc->invMassA;
- float iA = vc->invIA;
- float mB = vc->invMassB;
- float iB = vc->invIB;
- int32 pointCount = vc->pointCount;
- b2Vec2 vA = m_velocities[indexA].v;
- float wA = m_velocities[indexA].w;
- b2Vec2 vB = m_velocities[indexB].v;
- float wB = m_velocities[indexB].w;
- b2Vec2 normal = vc->normal;
- b2Vec2 tangent = b2Cross(normal, 1.0f);
- float friction = vc->friction;
- b2Assert(pointCount == 1 || pointCount == 2);
- // Solve tangent constraints first because non-penetration is more important
- // than friction.
- for (int32 j = 0; j < pointCount; ++j) {
- b2VelocityConstraintPoint* vcp = vc->points + j;
- // Relative velocity at contact
- b2Vec2 dv = vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA);
- // Compute tangent force
- float vt = b2Dot(dv, tangent) - vc->tangentSpeed;
- float lambda = vcp->tangentMass * (-vt);
- // b2Clamp the accumulated force
- float maxFriction = friction * vcp->normalImpulse;
- float newImpulse = b2Clamp(vcp->tangentImpulse + lambda, -maxFriction, maxFriction);
- lambda = newImpulse - vcp->tangentImpulse;
- vcp->tangentImpulse = newImpulse;
- // Apply contact impulse
- b2Vec2 P = lambda * tangent;
- vA -= mA * P;
- wA -= iA * b2Cross(vcp->rA, P);
- vB += mB * P;
- wB += iB * b2Cross(vcp->rB, P);
- }
- // Solve normal constraints
- if (pointCount == 1 || g_blockSolve == false) {
- for (int32 j = 0; j < pointCount; ++j) {
- b2VelocityConstraintPoint* vcp = vc->points + j;
- // Relative velocity at contact
- b2Vec2 dv = vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA);
- // Compute normal impulse
- float vn = b2Dot(dv, normal);
- float lambda = -vcp->normalMass * (vn - vcp->velocityBias);
- // b2Clamp the accumulated impulse
- float newImpulse = b2Max(vcp->normalImpulse + lambda, 0.0f);
- lambda = newImpulse - vcp->normalImpulse;
- vcp->normalImpulse = newImpulse;
- // Apply contact impulse
- b2Vec2 P = lambda * normal;
- vA -= mA * P;
- wA -= iA * b2Cross(vcp->rA, P);
- vB += mB * P;
- wB += iB * b2Cross(vcp->rB, P);
- }
- } else {
- // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite).
- // Build the mini LCP for this contact patch
- //
- // vn = A * x + b, vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2
- //
- // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n )
- // b = vn0 - velocityBias
- //
- // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i
- // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases
- // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid
- // solution that satisfies the problem is chosen.
- //
- // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires
- // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i).
- //
- // Substitute:
- //
- // x = a + d
- //
- // a := old total impulse
- // x := new total impulse
- // d := incremental impulse
- //
- // For the current iteration we extend the formula for the incremental impulse
- // to compute the new total impulse:
- //
- // vn = A * d + b
- // = A * (x - a) + b
- // = A * x + b - A * a
- // = A * x + b'
- // b' = b - A * a;
- b2VelocityConstraintPoint* cp1 = vc->points + 0;
- b2VelocityConstraintPoint* cp2 = vc->points + 1;
- b2Vec2 a(cp1->normalImpulse, cp2->normalImpulse);
- b2Assert(a.x >= 0.0f && a.y >= 0.0f);
- // Relative velocity at contact
- b2Vec2 dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA);
- b2Vec2 dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA);
- // Compute normal velocity
- float vn1 = b2Dot(dv1, normal);
- float vn2 = b2Dot(dv2, normal);
- b2Vec2 b;
- b.x = vn1 - cp1->velocityBias;
- b.y = vn2 - cp2->velocityBias;
- // Compute b'
- b -= b2Mul(vc->K, a);
- const float k_errorTol = 1e-3f;
- B2_NOT_USED(k_errorTol);
- for (;;) {
- //
- // Case 1: vn = 0
- //
- // 0 = A * x + b'
- //
- // Solve for x:
- //
- // x = - inv(A) * b'
- //
- b2Vec2 x = -b2Mul(vc->normalMass, b);
- if (x.x >= 0.0f && x.y >= 0.0f) {
- // Get the incremental impulse
- b2Vec2 d = x - a;
- // Apply incremental impulse
- b2Vec2 P1 = d.x * normal;
- b2Vec2 P2 = d.y * normal;
- vA -= mA * (P1 + P2);
- wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2));
- vB += mB * (P1 + P2);
- wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2));
- // Accumulate
- cp1->normalImpulse = x.x;
- cp2->normalImpulse = x.y;
- #if B2_DEBUG_SOLVER == 1
- // Postconditions
- dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA);
- dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA);
- // Compute normal velocity
- vn1 = b2Dot(dv1, normal);
- vn2 = b2Dot(dv2, normal);
- b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol);
- b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol);
- #endif
- break;
- }
- //
- // Case 2: vn1 = 0 and x2 = 0
- //
- // 0 = a11 * x1 + a12 * 0 + b1'
- // vn2 = a21 * x1 + a22 * 0 + b2'
- //
- x.x = -cp1->normalMass * b.x;
- x.y = 0.0f;
- vn1 = 0.0f;
- vn2 = vc->K.ex.y * x.x + b.y;
- if (x.x >= 0.0f && vn2 >= 0.0f) {
- // Get the incremental impulse
- b2Vec2 d = x - a;
- // Apply incremental impulse
- b2Vec2 P1 = d.x * normal;
- b2Vec2 P2 = d.y * normal;
- vA -= mA * (P1 + P2);
- wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2));
- vB += mB * (P1 + P2);
- wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2));
- // Accumulate
- cp1->normalImpulse = x.x;
- cp2->normalImpulse = x.y;
- #if B2_DEBUG_SOLVER == 1
- // Postconditions
- dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA);
- // Compute normal velocity
- vn1 = b2Dot(dv1, normal);
- b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol);
- #endif
- break;
- }
- //
- // Case 3: vn2 = 0 and x1 = 0
- //
- // vn1 = a11 * 0 + a12 * x2 + b1'
- // 0 = a21 * 0 + a22 * x2 + b2'
- //
- x.x = 0.0f;
- x.y = -cp2->normalMass * b.y;
- vn1 = vc->K.ey.x * x.y + b.x;
- vn2 = 0.0f;
- if (x.y >= 0.0f && vn1 >= 0.0f) {
- // Resubstitute for the incremental impulse
- b2Vec2 d = x - a;
- // Apply incremental impulse
- b2Vec2 P1 = d.x * normal;
- b2Vec2 P2 = d.y * normal;
- vA -= mA * (P1 + P2);
- wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2));
- vB += mB * (P1 + P2);
- wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2));
- // Accumulate
- cp1->normalImpulse = x.x;
- cp2->normalImpulse = x.y;
- #if B2_DEBUG_SOLVER == 1
- // Postconditions
- dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA);
- // Compute normal velocity
- vn2 = b2Dot(dv2, normal);
- b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol);
- #endif
- break;
- }
- //
- // Case 4: x1 = 0 and x2 = 0
- //
- // vn1 = b1
- // vn2 = b2;
- x.x = 0.0f;
- x.y = 0.0f;
- vn1 = b.x;
- vn2 = b.y;
- if (vn1 >= 0.0f && vn2 >= 0.0f) {
- // Resubstitute for the incremental impulse
- b2Vec2 d = x - a;
- // Apply incremental impulse
- b2Vec2 P1 = d.x * normal;
- b2Vec2 P2 = d.y * normal;
- vA -= mA * (P1 + P2);
- wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2));
- vB += mB * (P1 + P2);
- wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2));
- // Accumulate
- cp1->normalImpulse = x.x;
- cp2->normalImpulse = x.y;
- break;
- }
- // No solution, give up. This is hit sometimes, but it doesn't seem to matter.
- break;
- }
- }
- m_velocities[indexA].v = vA;
- m_velocities[indexA].w = wA;
- m_velocities[indexB].v = vB;
- m_velocities[indexB].w = wB;
- }
- }
- void b2ContactSolver::StoreImpulses() {
- for (int32 i = 0; i < m_count; ++i) {
- b2ContactVelocityConstraint* vc = m_velocityConstraints + i;
- b2Manifold* manifold = m_contacts[vc->contactIndex]->GetManifold();
- for (int32 j = 0; j < vc->pointCount; ++j) {
- manifold->points[j].normalImpulse = vc->points[j].normalImpulse;
- manifold->points[j].tangentImpulse = vc->points[j].tangentImpulse;
- }
- }
- }
- struct b2PositionSolverManifold {
- void Initialize(b2ContactPositionConstraint* pc, const b2Transform& xfA, const b2Transform& xfB, int32 index) {
- b2Assert(pc->pointCount > 0);
- switch (pc->type) {
- case b2Manifold::e_circles:
- {
- b2Vec2 pointA = b2Mul(xfA, pc->localPoint);
- b2Vec2 pointB = b2Mul(xfB, pc->localPoints[0]);
- normal = pointB - pointA;
- normal.Normalize();
- point = 0.5f * (pointA + pointB);
- separation = b2Dot(pointB - pointA, normal) - pc->radiusA - pc->radiusB;
- }
- break;
- case b2Manifold::e_faceA:
- {
- normal = b2Mul(xfA.q, pc->localNormal);
- b2Vec2 planePoint = b2Mul(xfA, pc->localPoint);
- b2Vec2 clipPoint = b2Mul(xfB, pc->localPoints[index]);
- separation = b2Dot(clipPoint - planePoint, normal) - pc->radiusA - pc->radiusB;
- point = clipPoint;
- }
- break;
- case b2Manifold::e_faceB:
- {
- normal = b2Mul(xfB.q, pc->localNormal);
- b2Vec2 planePoint = b2Mul(xfB, pc->localPoint);
- b2Vec2 clipPoint = b2Mul(xfA, pc->localPoints[index]);
- separation = b2Dot(clipPoint - planePoint, normal) - pc->radiusA - pc->radiusB;
- point = clipPoint;
- // Ensure normal points from A to B
- normal = -normal;
- }
- break;
- }
- }
- b2Vec2 normal;
- b2Vec2 point;
- float separation;
- };
- // Sequential solver.
- bool b2ContactSolver::SolvePositionConstraints() {
- float minSeparation = 0.0f;
- for (int32 i = 0; i < m_count; ++i) {
- b2ContactPositionConstraint* pc = m_positionConstraints + i;
- int32 indexA = pc->indexA;
- int32 indexB = pc->indexB;
- b2Vec2 localCenterA = pc->localCenterA;
- float mA = pc->invMassA;
- float iA = pc->invIA;
- b2Vec2 localCenterB = pc->localCenterB;
- float mB = pc->invMassB;
- float iB = pc->invIB;
- int32 pointCount = pc->pointCount;
- b2Vec2 cA = m_positions[indexA].c;
- float aA = m_positions[indexA].a;
- b2Vec2 cB = m_positions[indexB].c;
- float aB = m_positions[indexB].a;
- // Solve normal constraints
- for (int32 j = 0; j < pointCount; ++j) {
- b2Transform xfA, xfB;
- xfA.q.Set(aA);
- xfB.q.Set(aB);
- xfA.p = cA - b2Mul(xfA.q, localCenterA);
- xfB.p = cB - b2Mul(xfB.q, localCenterB);
- b2PositionSolverManifold psm;
- psm.Initialize(pc, xfA, xfB, j);
- b2Vec2 normal = psm.normal;
- b2Vec2 point = psm.point;
- float separation = psm.separation;
- b2Vec2 rA = point - cA;
- b2Vec2 rB = point - cB;
- // Track max constraint error.
- minSeparation = b2Min(minSeparation, separation);
- // Prevent large corrections and allow slop.
- float C = b2Clamp(b2_baumgarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f);
- // Compute the effective mass.
- float rnA = b2Cross(rA, normal);
- float rnB = b2Cross(rB, normal);
- float K = mA + mB + iA * rnA * rnA + iB * rnB * rnB;
- // Compute normal impulse
- float impulse = K > 0.0f ? -C / K : 0.0f;
- b2Vec2 P = impulse * normal;
- cA -= mA * P;
- aA -= iA * b2Cross(rA, P);
- cB += mB * P;
- aB += iB * b2Cross(rB, P);
- }
- m_positions[indexA].c = cA;
- m_positions[indexA].a = aA;
- m_positions[indexB].c = cB;
- m_positions[indexB].a = aB;
- }
- // We can't expect minSpeparation >= -b2_linearSlop because we don't
- // push the separation above -b2_linearSlop.
- return minSeparation >= -3.0f * b2_linearSlop;
- }
- // Sequential position solver for position constraints.
- bool b2ContactSolver::SolveTOIPositionConstraints(int32 toiIndexA, int32 toiIndexB) {
- float minSeparation = 0.0f;
- for (int32 i = 0; i < m_count; ++i) {
- b2ContactPositionConstraint* pc = m_positionConstraints + i;
- int32 indexA = pc->indexA;
- int32 indexB = pc->indexB;
- b2Vec2 localCenterA = pc->localCenterA;
- b2Vec2 localCenterB = pc->localCenterB;
- int32 pointCount = pc->pointCount;
- float mA = 0.0f;
- float iA = 0.0f;
- if (indexA == toiIndexA || indexA == toiIndexB) {
- mA = pc->invMassA;
- iA = pc->invIA;
- }
- float mB = 0.0f;
- float iB = 0.;
- if (indexB == toiIndexA || indexB == toiIndexB) {
- mB = pc->invMassB;
- iB = pc->invIB;
- }
- b2Vec2 cA = m_positions[indexA].c;
- float aA = m_positions[indexA].a;
- b2Vec2 cB = m_positions[indexB].c;
- float aB = m_positions[indexB].a;
- // Solve normal constraints
- for (int32 j = 0; j < pointCount; ++j) {
- b2Transform xfA, xfB;
- xfA.q.Set(aA);
- xfB.q.Set(aB);
- xfA.p = cA - b2Mul(xfA.q, localCenterA);
- xfB.p = cB - b2Mul(xfB.q, localCenterB);
- b2PositionSolverManifold psm;
- psm.Initialize(pc, xfA, xfB, j);
- b2Vec2 normal = psm.normal;
- b2Vec2 point = psm.point;
- float separation = psm.separation;
- b2Vec2 rA = point - cA;
- b2Vec2 rB = point - cB;
- // Track max constraint error.
- minSeparation = b2Min(minSeparation, separation);
- // Prevent large corrections and allow slop.
- float C = b2Clamp(b2_toiBaumgarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f);
- // Compute the effective mass.
- float rnA = b2Cross(rA, normal);
- float rnB = b2Cross(rB, normal);
- float K = mA + mB + iA * rnA * rnA + iB * rnB * rnB;
- // Compute normal impulse
- float impulse = K > 0.0f ? -C / K : 0.0f;
- b2Vec2 P = impulse * normal;
- cA -= mA * P;
- aA -= iA * b2Cross(rA, P);
- cB += mB * P;
- aB += iB * b2Cross(rB, P);
- }
- m_positions[indexA].c = cA;
- m_positions[indexA].a = aA;
- m_positions[indexB].c = cB;
- m_positions[indexB].a = aB;
- }
- // We can't expect minSpeparation >= -b2_linearSlop because we don't
- // push the separation above -b2_linearSlop.
- return minSeparation >= -1.5f * b2_linearSlop;
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_draw.h"
- //#include "box2d/b2_distance_joint.h"
- //#include "box2d/b2_time_step.h"
- // 1-D constrained system
- // m (v2 - v1) = lambda
- // v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass.
- // x2 = x1 + h * v2
- // 1-D mass-damper-spring system
- // m (v2 - v1) + h * d * v2 + h * k *
- // C = norm(p2 - p1) - L
- // u = (p2 - p1) / norm(p2 - p1)
- // Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1))
- // J = [-u -cross(r1, u) u cross(r2, u)]
- // K = J * invM * JT
- // = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2
- void b2DistanceJointDef::Initialize(b2Body* b1, b2Body* b2,
- const b2Vec2& anchor1, const b2Vec2& anchor2) {
- bodyA = b1;
- bodyB = b2;
- localAnchorA = bodyA->GetLocalPoint(anchor1);
- localAnchorB = bodyB->GetLocalPoint(anchor2);
- b2Vec2 d = anchor2 - anchor1;
- length = b2Max(d.Length(), b2_linearSlop);
- minLength = length;
- maxLength = length;
- }
- b2DistanceJoint::b2DistanceJoint(const b2DistanceJointDef* def)
- : b2Joint(def) {
- m_localAnchorA = def->localAnchorA;
- m_localAnchorB = def->localAnchorB;
- m_length = b2Max(def->length, b2_linearSlop);
- m_minLength = b2Max(def->minLength, b2_linearSlop);
- m_maxLength = b2Max(def->maxLength, m_minLength);
- m_stiffness = def->stiffness;
- m_damping = def->damping;
- m_gamma = 0.0f;
- m_bias = 0.0f;
- m_impulse = 0.0f;
- m_lowerImpulse = 0.0f;
- m_upperImpulse = 0.0f;
- m_currentLength = 0.0f;
- }
- void b2DistanceJoint::InitVelocityConstraints(const b2SolverData& data) {
- m_indexA = m_bodyA->m_islandIndex;
- m_indexB = m_bodyB->m_islandIndex;
- m_localCenterA = m_bodyA->m_sweep.localCenter;
- m_localCenterB = m_bodyB->m_sweep.localCenter;
- m_invMassA = m_bodyA->m_invMass;
- m_invMassB = m_bodyB->m_invMass;
- m_invIA = m_bodyA->m_invI;
- m_invIB = m_bodyB->m_invI;
- b2Vec2 cA = data.positions[m_indexA].c;
- float aA = data.positions[m_indexA].a;
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- b2Vec2 cB = data.positions[m_indexB].c;
- float aB = data.positions[m_indexB].a;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- b2Rot qA(aA), qB(aB);
- m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
- m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
- m_u = cB + m_rB - cA - m_rA;
- // Handle singularity.
- m_currentLength = m_u.Length();
- if (m_currentLength > b2_linearSlop) {
- m_u *= 1.0f / m_currentLength;
- } else {
- m_u.Set(0.0f, 0.0f);
- m_mass = 0.0f;
- m_impulse = 0.0f;
- m_lowerImpulse = 0.0f;
- m_upperImpulse = 0.0f;
- }
- float crAu = b2Cross(m_rA, m_u);
- float crBu = b2Cross(m_rB, m_u);
- float invMass = m_invMassA + m_invIA * crAu * crAu + m_invMassB + m_invIB * crBu * crBu;
- m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f;
- if (m_stiffness > 0.0f && m_minLength < m_maxLength) {
- // soft
- float C = m_currentLength - m_length;
- float d = m_damping;
- float k = m_stiffness;
- // magic formulas
- float h = data.step.dt;
- // gamma = 1 / (h * (d + h * k))
- // the extra factor of h in the denominator is since the lambda is an impulse, not a force
- m_gamma = h * (d + h * k);
- m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f;
- m_bias = C * h * k * m_gamma;
- invMass += m_gamma;
- m_softMass = invMass != 0.0f ? 1.0f / invMass : 0.0f;
- } else {
- // rigid
- m_gamma = 0.0f;
- m_bias = 0.0f;
- m_softMass = m_mass;
- }
- if (data.step.warmStarting) {
- // Scale the impulse to support a variable time step.
- m_impulse *= data.step.dtRatio;
- m_lowerImpulse *= data.step.dtRatio;
- m_upperImpulse *= data.step.dtRatio;
- b2Vec2 P = (m_impulse + m_lowerImpulse - m_upperImpulse) * m_u;
- vA -= m_invMassA * P;
- wA -= m_invIA * b2Cross(m_rA, P);
- vB += m_invMassB * P;
- wB += m_invIB * b2Cross(m_rB, P);
- } else {
- m_impulse = 0.0f;
- }
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- void b2DistanceJoint::SolveVelocityConstraints(const b2SolverData& data) {
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- if (m_minLength < m_maxLength) {
- if (m_stiffness > 0.0f) {
- // Cdot = dot(u, v + cross(w, r))
- b2Vec2 vpA = vA + b2Cross(wA, m_rA);
- b2Vec2 vpB = vB + b2Cross(wB, m_rB);
- float Cdot = b2Dot(m_u, vpB - vpA);
- float impulse = -m_softMass * (Cdot + m_bias + m_gamma * m_impulse);
- m_impulse += impulse;
- b2Vec2 P = impulse * m_u;
- vA -= m_invMassA * P;
- wA -= m_invIA * b2Cross(m_rA, P);
- vB += m_invMassB * P;
- wB += m_invIB * b2Cross(m_rB, P);
- }
- // lower
- {
- float C = m_currentLength - m_minLength;
- float bias = b2Max(0.0f, C) * data.step.inv_dt;
- b2Vec2 vpA = vA + b2Cross(wA, m_rA);
- b2Vec2 vpB = vB + b2Cross(wB, m_rB);
- float Cdot = b2Dot(m_u, vpB - vpA);
- float impulse = -m_mass * (Cdot + bias);
- float oldImpulse = m_lowerImpulse;
- m_lowerImpulse = b2Max(0.0f, m_lowerImpulse + impulse);
- impulse = m_lowerImpulse - oldImpulse;
- b2Vec2 P = impulse * m_u;
- vA -= m_invMassA * P;
- wA -= m_invIA * b2Cross(m_rA, P);
- vB += m_invMassB * P;
- wB += m_invIB * b2Cross(m_rB, P);
- }
- // upper
- {
- float C = m_maxLength - m_currentLength;
- float bias = b2Max(0.0f, C) * data.step.inv_dt;
- b2Vec2 vpA = vA + b2Cross(wA, m_rA);
- b2Vec2 vpB = vB + b2Cross(wB, m_rB);
- float Cdot = b2Dot(m_u, vpA - vpB);
- float impulse = -m_mass * (Cdot + bias);
- float oldImpulse = m_upperImpulse;
- m_upperImpulse = b2Max(0.0f, m_upperImpulse + impulse);
- impulse = m_upperImpulse - oldImpulse;
- b2Vec2 P = -impulse * m_u;
- vA -= m_invMassA * P;
- wA -= m_invIA * b2Cross(m_rA, P);
- vB += m_invMassB * P;
- wB += m_invIB * b2Cross(m_rB, P);
- }
- } else {
- // Equal limits
- // Cdot = dot(u, v + cross(w, r))
- b2Vec2 vpA = vA + b2Cross(wA, m_rA);
- b2Vec2 vpB = vB + b2Cross(wB, m_rB);
- float Cdot = b2Dot(m_u, vpB - vpA);
- float impulse = -m_mass * Cdot;
- m_impulse += impulse;
- b2Vec2 P = impulse * m_u;
- vA -= m_invMassA * P;
- wA -= m_invIA * b2Cross(m_rA, P);
- vB += m_invMassB * P;
- wB += m_invIB * b2Cross(m_rB, P);
- }
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- bool b2DistanceJoint::SolvePositionConstraints(const b2SolverData& data) {
- b2Vec2 cA = data.positions[m_indexA].c;
- float aA = data.positions[m_indexA].a;
- b2Vec2 cB = data.positions[m_indexB].c;
- float aB = data.positions[m_indexB].a;
- b2Rot qA(aA), qB(aB);
- b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
- b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
- b2Vec2 u = cB + rB - cA - rA;
- float length = u.Normalize();
- float C;
- if (m_minLength == m_maxLength) {
- C = length - m_minLength;
- } else if (length < m_minLength) {
- C = length - m_minLength;
- } else if (m_maxLength < length) {
- C = length - m_maxLength;
- } else {
- return true;
- }
- float impulse = -m_mass * C;
- b2Vec2 P = impulse * u;
- cA -= m_invMassA * P;
- aA -= m_invIA * b2Cross(rA, P);
- cB += m_invMassB * P;
- aB += m_invIB * b2Cross(rB, P);
- data.positions[m_indexA].c = cA;
- data.positions[m_indexA].a = aA;
- data.positions[m_indexB].c = cB;
- data.positions[m_indexB].a = aB;
- return b2Abs(C) < b2_linearSlop;
- }
- b2Vec2 b2DistanceJoint::GetAnchorA() const {
- return m_bodyA->GetWorldPoint(m_localAnchorA);
- }
- b2Vec2 b2DistanceJoint::GetAnchorB() const {
- return m_bodyB->GetWorldPoint(m_localAnchorB);
- }
- b2Vec2 b2DistanceJoint::GetReactionForce(float inv_dt) const {
- b2Vec2 F = inv_dt * (m_impulse + m_lowerImpulse - m_upperImpulse) * m_u;
- return F;
- }
- float b2DistanceJoint::GetReactionTorque(float inv_dt) const {
- B2_NOT_USED(inv_dt);
- return 0.0f;
- }
- float b2DistanceJoint::SetLength(float length) {
- m_impulse = 0.0f;
- m_length = b2Max(b2_linearSlop, length);
- return m_length;
- }
- float b2DistanceJoint::SetMinLength(float minLength) {
- m_lowerImpulse = 0.0f;
- m_minLength = b2Clamp(minLength, b2_linearSlop, m_maxLength);
- return m_minLength;
- }
- float b2DistanceJoint::SetMaxLength(float maxLength) {
- m_upperImpulse = 0.0f;
- m_maxLength = b2Max(maxLength, m_minLength);
- return m_maxLength;
- }
- float b2DistanceJoint::GetCurrentLength() const {
- b2Vec2 pA = m_bodyA->GetWorldPoint(m_localAnchorA);
- b2Vec2 pB = m_bodyB->GetWorldPoint(m_localAnchorB);
- b2Vec2 d = pB - pA;
- float length = d.Length();
- return length;
- }
- void b2DistanceJoint::Dump() {
- int32 indexA = m_bodyA->m_islandIndex;
- int32 indexB = m_bodyB->m_islandIndex;
- b2Dump(" b2DistanceJointDef jd;\n");
- b2Dump(" jd.bodyA = bodies[%d];\n", indexA);
- b2Dump(" jd.bodyB = bodies[%d];\n", indexB);
- b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected);
- b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y);
- b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y);
- b2Dump(" jd.length = %.9g;\n", m_length);
- b2Dump(" jd.minLength = %.9g;\n", m_minLength);
- b2Dump(" jd.maxLength = %.9g;\n", m_maxLength);
- b2Dump(" jd.stiffness = %.9g;\n", m_stiffness);
- b2Dump(" jd.damping = %.9g;\n", m_damping);
- b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
- }
- void b2DistanceJoint::Draw(b2Draw* draw) const {
- const b2Transform& xfA = m_bodyA->GetTransform();
- const b2Transform& xfB = m_bodyB->GetTransform();
- b2Vec2 pA = b2Mul(xfA, m_localAnchorA);
- b2Vec2 pB = b2Mul(xfB, m_localAnchorB);
- b2Vec2 axis = pB - pA;
- float length = axis.Normalize();
- b2Color c1(0.7f, 0.7f, 0.7f);
- b2Color c2(0.3f, 0.9f, 0.3f);
- b2Color c3(0.9f, 0.3f, 0.3f);
- b2Color c4(0.4f, 0.4f, 0.4f);
- draw->DrawSegment(pA, pB, c4);
- b2Vec2 pRest = pA + m_length * axis;
- draw->DrawPoint(pRest, 8.0f, c1);
- if (m_minLength != m_maxLength) {
- if (m_minLength > b2_linearSlop) {
- b2Vec2 pMin = pA + m_minLength * axis;
- draw->DrawPoint(pMin, 4.0f, c2);
- }
- if (m_maxLength < FLT_MAX) {
- b2Vec2 pMax = pA + m_maxLength * axis;
- draw->DrawPoint(pMax, 4.0f, c3);
- }
- }
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "b2_edge_circle_contact.h"
- //#include "box2d/b2_block_allocator.h"
- //#include "box2d/b2_fixture.h"
- #include <new>
- b2Contact* b2EdgeAndCircleContact::Create(b2Fixture* fixtureA, int32, b2Fixture* fixtureB, int32, b2BlockAllocator* allocator) {
- void* mem = allocator->Allocate(sizeof(b2EdgeAndCircleContact));
- return new (mem) b2EdgeAndCircleContact(fixtureA, fixtureB);
- }
- void b2EdgeAndCircleContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) {
- ((b2EdgeAndCircleContact*)contact)->~b2EdgeAndCircleContact();
- allocator->Free(contact, sizeof(b2EdgeAndCircleContact));
- }
- b2EdgeAndCircleContact::b2EdgeAndCircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB)
- : b2Contact(fixtureA, 0, fixtureB, 0) {
- b2Assert(m_fixtureA->GetType() == b2Shape::e_edge);
- b2Assert(m_fixtureB->GetType() == b2Shape::e_circle);
- }
- void b2EdgeAndCircleContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) {
- b2CollideEdgeAndCircle(manifold,
- (b2EdgeShape*)m_fixtureA->GetShape(), xfA,
- (b2CircleShape*)m_fixtureB->GetShape(), xfB);
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "b2_edge_polygon_contact.h"
- //#include "box2d/b2_block_allocator.h"
- //#include "box2d/b2_fixture.h"
- #include <new>
- b2Contact* b2EdgeAndPolygonContact::Create(b2Fixture* fixtureA, int32, b2Fixture* fixtureB, int32, b2BlockAllocator* allocator) {
- void* mem = allocator->Allocate(sizeof(b2EdgeAndPolygonContact));
- return new (mem) b2EdgeAndPolygonContact(fixtureA, fixtureB);
- }
- void b2EdgeAndPolygonContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) {
- ((b2EdgeAndPolygonContact*)contact)->~b2EdgeAndPolygonContact();
- allocator->Free(contact, sizeof(b2EdgeAndPolygonContact));
- }
- b2EdgeAndPolygonContact::b2EdgeAndPolygonContact(b2Fixture* fixtureA, b2Fixture* fixtureB)
- : b2Contact(fixtureA, 0, fixtureB, 0) {
- b2Assert(m_fixtureA->GetType() == b2Shape::e_edge);
- b2Assert(m_fixtureB->GetType() == b2Shape::e_polygon);
- }
- void b2EdgeAndPolygonContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) {
- b2CollideEdgeAndPolygon(manifold,
- (b2EdgeShape*)m_fixtureA->GetShape(), xfA,
- (b2PolygonShape*)m_fixtureB->GetShape(), xfB);
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_fixture.h"
- //#include "box2d/b2_block_allocator.h"
- //#include "box2d/b2_broad_phase.h"
- //#include "box2d/b2_chain_shape.h"
- //#include "box2d/b2_circle_shape.h"
- //#include "box2d/b2_collision.h"
- //#include "box2d/b2_contact.h"
- //#include "box2d/b2_edge_shape.h"
- //#include "box2d/b2_polygon_shape.h"
- //#include "box2d/b2_world.h"
- b2Fixture::b2Fixture() {
- m_body = nullptr;
- m_next = nullptr;
- m_proxies = nullptr;
- m_proxyCount = 0;
- m_shape = nullptr;
- m_density = 0.0f;
- }
- void b2Fixture::Create(b2BlockAllocator* allocator, b2Body* body, const b2FixtureDef* def) {
- m_userData = def->userData;
- m_friction = def->friction;
- m_restitution = def->restitution;
- m_restitutionThreshold = def->restitutionThreshold;
- m_body = body;
- m_next = nullptr;
- m_filter = def->filter;
- m_isSensor = def->isSensor;
- m_shape = def->shape->Clone(allocator);
- // Reserve proxy space
- int32 childCount = m_shape->GetChildCount();
- m_proxies = (b2FixtureProxy*)allocator->Allocate(childCount * sizeof(b2FixtureProxy));
- for (int32 i = 0; i < childCount; ++i) {
- m_proxies[i].fixture = nullptr;
- m_proxies[i].proxyId = b2BroadPhase::e_nullProxy;
- }
- m_proxyCount = 0;
- m_density = def->density;
- }
- void b2Fixture::Destroy(b2BlockAllocator* allocator) {
- // The proxies must be destroyed before calling this.
- b2Assert(m_proxyCount == 0);
- // Free the proxy array.
- int32 childCount = m_shape->GetChildCount();
- allocator->Free(m_proxies, childCount * sizeof(b2FixtureProxy));
- m_proxies = nullptr;
- // Free the child shape.
- switch (m_shape->m_type) {
- case b2Shape::e_circle:
- {
- b2CircleShape* s = (b2CircleShape*)m_shape;
- s->~b2CircleShape();
- allocator->Free(s, sizeof(b2CircleShape));
- }
- break;
- case b2Shape::e_edge:
- {
- b2EdgeShape* s = (b2EdgeShape*)m_shape;
- s->~b2EdgeShape();
- allocator->Free(s, sizeof(b2EdgeShape));
- }
- break;
- case b2Shape::e_polygon:
- {
- b2PolygonShape* s = (b2PolygonShape*)m_shape;
- s->~b2PolygonShape();
- allocator->Free(s, sizeof(b2PolygonShape));
- }
- break;
- case b2Shape::e_chain:
- {
- b2ChainShape* s = (b2ChainShape*)m_shape;
- s->~b2ChainShape();
- allocator->Free(s, sizeof(b2ChainShape));
- }
- break;
- default:
- b2Assert(false);
- break;
- }
- m_shape = nullptr;
- }
- void b2Fixture::CreateProxies(b2BroadPhase* broadPhase, const b2Transform& xf) {
- b2Assert(m_proxyCount == 0);
- // Create proxies in the broad-phase.
- m_proxyCount = m_shape->GetChildCount();
- for (int32 i = 0; i < m_proxyCount; ++i) {
- b2FixtureProxy* proxy = m_proxies + i;
- m_shape->ComputeAABB(&proxy->aabb, xf, i);
- proxy->proxyId = broadPhase->CreateProxy(proxy->aabb, proxy);
- proxy->fixture = this;
- proxy->childIndex = i;
- }
- }
- void b2Fixture::DestroyProxies(b2BroadPhase* broadPhase) {
- // Destroy proxies in the broad-phase.
- for (int32 i = 0; i < m_proxyCount; ++i) {
- b2FixtureProxy* proxy = m_proxies + i;
- broadPhase->DestroyProxy(proxy->proxyId);
- proxy->proxyId = b2BroadPhase::e_nullProxy;
- }
- m_proxyCount = 0;
- }
- void b2Fixture::Synchronize(b2BroadPhase* broadPhase, const b2Transform& transform1, const b2Transform& transform2) {
- if (m_proxyCount == 0) {
- return;
- }
- for (int32 i = 0; i < m_proxyCount; ++i) {
- b2FixtureProxy* proxy = m_proxies + i;
- // Compute an AABB that covers the swept shape (may miss some rotation effect).
- b2AABB aabb1, aabb2;
- m_shape->ComputeAABB(&aabb1, transform1, proxy->childIndex);
- m_shape->ComputeAABB(&aabb2, transform2, proxy->childIndex);
- proxy->aabb.Combine(aabb1, aabb2);
- b2Vec2 displacement = aabb2.GetCenter() - aabb1.GetCenter();
- broadPhase->MoveProxy(proxy->proxyId, proxy->aabb, displacement);
- }
- }
- void b2Fixture::SetFilterData(const b2Filter& filter) {
- m_filter = filter;
- Refilter();
- }
- void b2Fixture::Refilter() {
- if (m_body == nullptr) {
- return;
- }
- // Flag associated contacts for filtering.
- b2ContactEdge* edge = m_body->GetContactList();
- while (edge) {
- b2Contact* contact = edge->contact;
- b2Fixture* fixtureA = contact->GetFixtureA();
- b2Fixture* fixtureB = contact->GetFixtureB();
- if (fixtureA == this || fixtureB == this) {
- contact->FlagForFiltering();
- }
- edge = edge->next;
- }
- b2World* world = m_body->GetWorld();
- if (world == nullptr) {
- return;
- }
- // Touch each proxy so that new pairs may be created
- b2BroadPhase* broadPhase = &world->m_contactManager.m_broadPhase;
- for (int32 i = 0; i < m_proxyCount; ++i) {
- broadPhase->TouchProxy(m_proxies[i].proxyId);
- }
- }
- void b2Fixture::SetSensor(bool sensor) {
- if (sensor != m_isSensor) {
- m_body->SetAwake(true);
- m_isSensor = sensor;
- }
- }
- void b2Fixture::Dump(int32 bodyIndex) {
- b2Dump(" b2FixtureDef fd;\n");
- b2Dump(" fd.friction = %.9g;\n", m_friction);
- b2Dump(" fd.restitution = %.9g;\n", m_restitution);
- b2Dump(" fd.restitutionThreshold = %.9g;\n", m_restitutionThreshold);
- b2Dump(" fd.density = %.9g;\n", m_density);
- b2Dump(" fd.isSensor = bool(%d);\n", m_isSensor);
- b2Dump(" fd.filter.categoryBits = uint16(%d);\n", m_filter.categoryBits);
- b2Dump(" fd.filter.maskBits = uint16(%d);\n", m_filter.maskBits);
- b2Dump(" fd.filter.groupIndex = int16(%d);\n", m_filter.groupIndex);
- switch (m_shape->m_type) {
- case b2Shape::e_circle:
- {
- b2CircleShape* s = (b2CircleShape*)m_shape;
- b2Dump(" b2CircleShape shape;\n");
- b2Dump(" shape.m_radius = %.9g;\n", s->m_radius);
- b2Dump(" shape.m_p.Set(%.9g, %.9g);\n", s->m_p.x, s->m_p.y);
- }
- break;
- case b2Shape::e_edge:
- {
- b2EdgeShape* s = (b2EdgeShape*)m_shape;
- b2Dump(" b2EdgeShape shape;\n");
- b2Dump(" shape.m_radius = %.9g;\n", s->m_radius);
- b2Dump(" shape.m_vertex0.Set(%.9g, %.9g);\n", s->m_vertex0.x, s->m_vertex0.y);
- b2Dump(" shape.m_vertex1.Set(%.9g, %.9g);\n", s->m_vertex1.x, s->m_vertex1.y);
- b2Dump(" shape.m_vertex2.Set(%.9g, %.9g);\n", s->m_vertex2.x, s->m_vertex2.y);
- b2Dump(" shape.m_vertex3.Set(%.9g, %.9g);\n", s->m_vertex3.x, s->m_vertex3.y);
- b2Dump(" shape.m_oneSided = bool(%d);\n", s->m_oneSided);
- }
- break;
- case b2Shape::e_polygon:
- {
- b2PolygonShape* s = (b2PolygonShape*)m_shape;
- b2Dump(" b2PolygonShape shape;\n");
- b2Dump(" b2Vec2 vs[%d];\n", b2_maxPolygonVertices);
- for (int32 i = 0; i < s->m_count; ++i) {
- b2Dump(" vs[%d].Set(%.9g, %.9g);\n", i, s->m_vertices[i].x, s->m_vertices[i].y);
- }
- b2Dump(" shape.Set(vs, %d);\n", s->m_count);
- }
- break;
- case b2Shape::e_chain:
- {
- b2ChainShape* s = (b2ChainShape*)m_shape;
- b2Dump(" b2ChainShape shape;\n");
- b2Dump(" b2Vec2 vs[%d];\n", s->m_count);
- for (int32 i = 0; i < s->m_count; ++i) {
- b2Dump(" vs[%d].Set(%.9g, %.9g);\n", i, s->m_vertices[i].x, s->m_vertices[i].y);
- }
- b2Dump(" shape.CreateChain(vs, %d);\n", s->m_count);
- b2Dump(" shape.m_prevVertex.Set(%.9g, %.9g);\n", s->m_prevVertex.x, s->m_prevVertex.y);
- b2Dump(" shape.m_nextVertex.Set(%.9g, %.9g);\n", s->m_nextVertex.x, s->m_nextVertex.y);
- }
- break;
- default:
- return;
- }
- b2Dump("\n");
- b2Dump(" fd.shape = &shape;\n");
- b2Dump("\n");
- b2Dump(" bodies[%d]->CreateFixture(&fd);\n", bodyIndex);
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_friction_joint.h"
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_time_step.h"
- // Point-to-point constraint
- // Cdot = v2 - v1
- // = v2 + cross(w2, r2) - v1 - cross(w1, r1)
- // J = [-I -r1_skew I r2_skew ]
- // Identity used:
- // w k % (rx i + ry j) = w * (-ry i + rx j)
- // Angle constraint
- // Cdot = w2 - w1
- // J = [0 0 -1 0 0 1]
- // K = invI1 + invI2
- void b2FrictionJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) {
- bodyA = bA;
- bodyB = bB;
- localAnchorA = bodyA->GetLocalPoint(anchor);
- localAnchorB = bodyB->GetLocalPoint(anchor);
- }
- b2FrictionJoint::b2FrictionJoint(const b2FrictionJointDef* def)
- : b2Joint(def) {
- m_localAnchorA = def->localAnchorA;
- m_localAnchorB = def->localAnchorB;
- m_linearImpulse.SetZero();
- m_angularImpulse = 0.0f;
- m_maxForce = def->maxForce;
- m_maxTorque = def->maxTorque;
- }
- void b2FrictionJoint::InitVelocityConstraints(const b2SolverData& data) {
- m_indexA = m_bodyA->m_islandIndex;
- m_indexB = m_bodyB->m_islandIndex;
- m_localCenterA = m_bodyA->m_sweep.localCenter;
- m_localCenterB = m_bodyB->m_sweep.localCenter;
- m_invMassA = m_bodyA->m_invMass;
- m_invMassB = m_bodyB->m_invMass;
- m_invIA = m_bodyA->m_invI;
- m_invIB = m_bodyB->m_invI;
- float aA = data.positions[m_indexA].a;
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- float aB = data.positions[m_indexB].a;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- b2Rot qA(aA), qB(aB);
- // Compute the effective mass matrix.
- m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
- m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
- // J = [-I -r1_skew I r2_skew]
- // [ 0 -1 0 1]
- // r_skew = [-ry; rx]
- // Matlab
- // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
- // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
- // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
- float mA = m_invMassA, mB = m_invMassB;
- float iA = m_invIA, iB = m_invIB;
- b2Mat22 K;
- K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y;
- K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y;
- K.ey.x = K.ex.y;
- K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x;
- m_linearMass = K.GetInverse();
- m_angularMass = iA + iB;
- if (m_angularMass > 0.0f) {
- m_angularMass = 1.0f / m_angularMass;
- }
- if (data.step.warmStarting) {
- // Scale impulses to support a variable time step.
- m_linearImpulse *= data.step.dtRatio;
- m_angularImpulse *= data.step.dtRatio;
- b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y);
- vA -= mA * P;
- wA -= iA * (b2Cross(m_rA, P) + m_angularImpulse);
- vB += mB * P;
- wB += iB * (b2Cross(m_rB, P) + m_angularImpulse);
- } else {
- m_linearImpulse.SetZero();
- m_angularImpulse = 0.0f;
- }
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- void b2FrictionJoint::SolveVelocityConstraints(const b2SolverData& data) {
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- float mA = m_invMassA, mB = m_invMassB;
- float iA = m_invIA, iB = m_invIB;
- float h = data.step.dt;
- // Solve angular friction
- {
- float Cdot = wB - wA;
- float impulse = -m_angularMass * Cdot;
- float oldImpulse = m_angularImpulse;
- float maxImpulse = h * m_maxTorque;
- m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse);
- impulse = m_angularImpulse - oldImpulse;
- wA -= iA * impulse;
- wB += iB * impulse;
- }
- // Solve linear friction
- {
- b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA);
- b2Vec2 impulse = -b2Mul(m_linearMass, Cdot);
- b2Vec2 oldImpulse = m_linearImpulse;
- m_linearImpulse += impulse;
- float maxImpulse = h * m_maxForce;
- if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse) {
- m_linearImpulse.Normalize();
- m_linearImpulse *= maxImpulse;
- }
- impulse = m_linearImpulse - oldImpulse;
- vA -= mA * impulse;
- wA -= iA * b2Cross(m_rA, impulse);
- vB += mB * impulse;
- wB += iB * b2Cross(m_rB, impulse);
- }
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- bool b2FrictionJoint::SolvePositionConstraints(const b2SolverData& data) {
- B2_NOT_USED(data);
- return true;
- }
- b2Vec2 b2FrictionJoint::GetAnchorA() const {
- return m_bodyA->GetWorldPoint(m_localAnchorA);
- }
- b2Vec2 b2FrictionJoint::GetAnchorB() const {
- return m_bodyB->GetWorldPoint(m_localAnchorB);
- }
- b2Vec2 b2FrictionJoint::GetReactionForce(float inv_dt) const {
- return inv_dt * m_linearImpulse;
- }
- float b2FrictionJoint::GetReactionTorque(float inv_dt) const {
- return inv_dt * m_angularImpulse;
- }
- void b2FrictionJoint::SetMaxForce(float force) {
- b2Assert(b2IsValid(force) && force >= 0.0f);
- m_maxForce = force;
- }
- float b2FrictionJoint::GetMaxForce() const {
- return m_maxForce;
- }
- void b2FrictionJoint::SetMaxTorque(float torque) {
- b2Assert(b2IsValid(torque) && torque >= 0.0f);
- m_maxTorque = torque;
- }
- float b2FrictionJoint::GetMaxTorque() const {
- return m_maxTorque;
- }
- void b2FrictionJoint::Dump() {
- int32 indexA = m_bodyA->m_islandIndex;
- int32 indexB = m_bodyB->m_islandIndex;
- b2Dump(" b2FrictionJointDef jd;\n");
- b2Dump(" jd.bodyA = bodies[%d];\n", indexA);
- b2Dump(" jd.bodyB = bodies[%d];\n", indexB);
- b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected);
- b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y);
- b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y);
- b2Dump(" jd.maxForce = %.9g;\n", m_maxForce);
- b2Dump(" jd.maxTorque = %.9g;\n", m_maxTorque);
- b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_gear_joint.h"
- //#include "box2d/b2_revolute_joint.h"
- //#include "box2d/b2_prismatic_joint.h"
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_time_step.h"
- // Gear Joint:
- // C0 = (coordinate1 + ratio * coordinate2)_initial
- // C = (coordinate1 + ratio * coordinate2) - C0 = 0
- // J = [J1 ratio * J2]
- // K = J * invM * JT
- // = J1 * invM1 * J1T + ratio * ratio * J2 * invM2 * J2T
- //
- // Revolute:
- // coordinate = rotation
- // Cdot = angularVelocity
- // J = [0 0 1]
- // K = J * invM * JT = invI
- //
- // Prismatic:
- // coordinate = dot(p - pg, ug)
- // Cdot = dot(v + cross(w, r), ug)
- // J = [ug cross(r, ug)]
- // K = J * invM * JT = invMass + invI * cross(r, ug)^2
- b2GearJoint::b2GearJoint(const b2GearJointDef* def)
- : b2Joint(def) {
- m_joint1 = def->joint1;
- m_joint2 = def->joint2;
- m_typeA = m_joint1->GetType();
- m_typeB = m_joint2->GetType();
- b2Assert(m_typeA == e_revoluteJoint || m_typeA == e_prismaticJoint);
- b2Assert(m_typeB == e_revoluteJoint || m_typeB == e_prismaticJoint);
- float coordinateA, coordinateB;
- // TODO_ERIN there might be some problem with the joint edges in b2Joint.
- m_bodyC = m_joint1->GetBodyA();
- m_bodyA = m_joint1->GetBodyB();
- // Body B on joint1 must be dynamic
- b2Assert(m_bodyA->m_type == b2_dynamicBody);
- // Get geometry of joint1
- b2Transform xfA = m_bodyA->m_xf;
- float aA = m_bodyA->m_sweep.a;
- b2Transform xfC = m_bodyC->m_xf;
- float aC = m_bodyC->m_sweep.a;
- if (m_typeA == e_revoluteJoint) {
- b2RevoluteJoint* revolute = (b2RevoluteJoint*)def->joint1;
- m_localAnchorC = revolute->m_localAnchorA;
- m_localAnchorA = revolute->m_localAnchorB;
- m_referenceAngleA = revolute->m_referenceAngle;
- m_localAxisC.SetZero();
- coordinateA = aA - aC - m_referenceAngleA;
- } else {
- b2PrismaticJoint* prismatic = (b2PrismaticJoint*)def->joint1;
- m_localAnchorC = prismatic->m_localAnchorA;
- m_localAnchorA = prismatic->m_localAnchorB;
- m_referenceAngleA = prismatic->m_referenceAngle;
- m_localAxisC = prismatic->m_localXAxisA;
- b2Vec2 pC = m_localAnchorC;
- b2Vec2 pA = b2MulT(xfC.q, b2Mul(xfA.q, m_localAnchorA) + (xfA.p - xfC.p));
- coordinateA = b2Dot(pA - pC, m_localAxisC);
- }
- m_bodyD = m_joint2->GetBodyA();
- m_bodyB = m_joint2->GetBodyB();
- // Body B on joint2 must be dynamic
- b2Assert(m_bodyB->m_type == b2_dynamicBody);
- // Get geometry of joint2
- b2Transform xfB = m_bodyB->m_xf;
- float aB = m_bodyB->m_sweep.a;
- b2Transform xfD = m_bodyD->m_xf;
- float aD = m_bodyD->m_sweep.a;
- if (m_typeB == e_revoluteJoint) {
- b2RevoluteJoint* revolute = (b2RevoluteJoint*)def->joint2;
- m_localAnchorD = revolute->m_localAnchorA;
- m_localAnchorB = revolute->m_localAnchorB;
- m_referenceAngleB = revolute->m_referenceAngle;
- m_localAxisD.SetZero();
- coordinateB = aB - aD - m_referenceAngleB;
- } else {
- b2PrismaticJoint* prismatic = (b2PrismaticJoint*)def->joint2;
- m_localAnchorD = prismatic->m_localAnchorA;
- m_localAnchorB = prismatic->m_localAnchorB;
- m_referenceAngleB = prismatic->m_referenceAngle;
- m_localAxisD = prismatic->m_localXAxisA;
- b2Vec2 pD = m_localAnchorD;
- b2Vec2 pB = b2MulT(xfD.q, b2Mul(xfB.q, m_localAnchorB) + (xfB.p - xfD.p));
- coordinateB = b2Dot(pB - pD, m_localAxisD);
- }
- m_ratio = def->ratio;
- m_constant = coordinateA + m_ratio * coordinateB;
- m_impulse = 0.0f;
- }
- void b2GearJoint::InitVelocityConstraints(const b2SolverData& data) {
- m_indexA = m_bodyA->m_islandIndex;
- m_indexB = m_bodyB->m_islandIndex;
- m_indexC = m_bodyC->m_islandIndex;
- m_indexD = m_bodyD->m_islandIndex;
- m_lcA = m_bodyA->m_sweep.localCenter;
- m_lcB = m_bodyB->m_sweep.localCenter;
- m_lcC = m_bodyC->m_sweep.localCenter;
- m_lcD = m_bodyD->m_sweep.localCenter;
- m_mA = m_bodyA->m_invMass;
- m_mB = m_bodyB->m_invMass;
- m_mC = m_bodyC->m_invMass;
- m_mD = m_bodyD->m_invMass;
- m_iA = m_bodyA->m_invI;
- m_iB = m_bodyB->m_invI;
- m_iC = m_bodyC->m_invI;
- m_iD = m_bodyD->m_invI;
- float aA = data.positions[m_indexA].a;
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- float aB = data.positions[m_indexB].a;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- float aC = data.positions[m_indexC].a;
- b2Vec2 vC = data.velocities[m_indexC].v;
- float wC = data.velocities[m_indexC].w;
- float aD = data.positions[m_indexD].a;
- b2Vec2 vD = data.velocities[m_indexD].v;
- float wD = data.velocities[m_indexD].w;
- b2Rot qA(aA), qB(aB), qC(aC), qD(aD);
- m_mass = 0.0f;
- if (m_typeA == e_revoluteJoint) {
- m_JvAC.SetZero();
- m_JwA = 1.0f;
- m_JwC = 1.0f;
- m_mass += m_iA + m_iC;
- } else {
- b2Vec2 u = b2Mul(qC, m_localAxisC);
- b2Vec2 rC = b2Mul(qC, m_localAnchorC - m_lcC);
- b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_lcA);
- m_JvAC = u;
- m_JwC = b2Cross(rC, u);
- m_JwA = b2Cross(rA, u);
- m_mass += m_mC + m_mA + m_iC * m_JwC * m_JwC + m_iA * m_JwA * m_JwA;
- }
- if (m_typeB == e_revoluteJoint) {
- m_JvBD.SetZero();
- m_JwB = m_ratio;
- m_JwD = m_ratio;
- m_mass += m_ratio * m_ratio * (m_iB + m_iD);
- } else {
- b2Vec2 u = b2Mul(qD, m_localAxisD);
- b2Vec2 rD = b2Mul(qD, m_localAnchorD - m_lcD);
- b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_lcB);
- m_JvBD = m_ratio * u;
- m_JwD = m_ratio * b2Cross(rD, u);
- m_JwB = m_ratio * b2Cross(rB, u);
- m_mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * m_JwD * m_JwD + m_iB * m_JwB * m_JwB;
- }
- // Compute effective mass.
- m_mass = m_mass > 0.0f ? 1.0f / m_mass : 0.0f;
- if (data.step.warmStarting) {
- vA += (m_mA * m_impulse) * m_JvAC;
- wA += m_iA * m_impulse * m_JwA;
- vB += (m_mB * m_impulse) * m_JvBD;
- wB += m_iB * m_impulse * m_JwB;
- vC -= (m_mC * m_impulse) * m_JvAC;
- wC -= m_iC * m_impulse * m_JwC;
- vD -= (m_mD * m_impulse) * m_JvBD;
- wD -= m_iD * m_impulse * m_JwD;
- } else {
- m_impulse = 0.0f;
- }
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- data.velocities[m_indexC].v = vC;
- data.velocities[m_indexC].w = wC;
- data.velocities[m_indexD].v = vD;
- data.velocities[m_indexD].w = wD;
- }
- void b2GearJoint::SolveVelocityConstraints(const b2SolverData& data) {
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- b2Vec2 vC = data.velocities[m_indexC].v;
- float wC = data.velocities[m_indexC].w;
- b2Vec2 vD = data.velocities[m_indexD].v;
- float wD = data.velocities[m_indexD].w;
- float Cdot = b2Dot(m_JvAC, vA - vC) + b2Dot(m_JvBD, vB - vD);
- Cdot += (m_JwA * wA - m_JwC * wC) + (m_JwB * wB - m_JwD * wD);
- float impulse = -m_mass * Cdot;
- m_impulse += impulse;
- vA += (m_mA * impulse) * m_JvAC;
- wA += m_iA * impulse * m_JwA;
- vB += (m_mB * impulse) * m_JvBD;
- wB += m_iB * impulse * m_JwB;
- vC -= (m_mC * impulse) * m_JvAC;
- wC -= m_iC * impulse * m_JwC;
- vD -= (m_mD * impulse) * m_JvBD;
- wD -= m_iD * impulse * m_JwD;
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- data.velocities[m_indexC].v = vC;
- data.velocities[m_indexC].w = wC;
- data.velocities[m_indexD].v = vD;
- data.velocities[m_indexD].w = wD;
- }
- bool b2GearJoint::SolvePositionConstraints(const b2SolverData& data) {
- b2Vec2 cA = data.positions[m_indexA].c;
- float aA = data.positions[m_indexA].a;
- b2Vec2 cB = data.positions[m_indexB].c;
- float aB = data.positions[m_indexB].a;
- b2Vec2 cC = data.positions[m_indexC].c;
- float aC = data.positions[m_indexC].a;
- b2Vec2 cD = data.positions[m_indexD].c;
- float aD = data.positions[m_indexD].a;
- b2Rot qA(aA), qB(aB), qC(aC), qD(aD);
- float linearError = 0.0f;
- float coordinateA, coordinateB;
- b2Vec2 JvAC, JvBD;
- float JwA, JwB, JwC, JwD;
- float mass = 0.0f;
- if (m_typeA == e_revoluteJoint) {
- JvAC.SetZero();
- JwA = 1.0f;
- JwC = 1.0f;
- mass += m_iA + m_iC;
- coordinateA = aA - aC - m_referenceAngleA;
- } else {
- b2Vec2 u = b2Mul(qC, m_localAxisC);
- b2Vec2 rC = b2Mul(qC, m_localAnchorC - m_lcC);
- b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_lcA);
- JvAC = u;
- JwC = b2Cross(rC, u);
- JwA = b2Cross(rA, u);
- mass += m_mC + m_mA + m_iC * JwC * JwC + m_iA * JwA * JwA;
- b2Vec2 pC = m_localAnchorC - m_lcC;
- b2Vec2 pA = b2MulT(qC, rA + (cA - cC));
- coordinateA = b2Dot(pA - pC, m_localAxisC);
- }
- if (m_typeB == e_revoluteJoint) {
- JvBD.SetZero();
- JwB = m_ratio;
- JwD = m_ratio;
- mass += m_ratio * m_ratio * (m_iB + m_iD);
- coordinateB = aB - aD - m_referenceAngleB;
- } else {
- b2Vec2 u = b2Mul(qD, m_localAxisD);
- b2Vec2 rD = b2Mul(qD, m_localAnchorD - m_lcD);
- b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_lcB);
- JvBD = m_ratio * u;
- JwD = m_ratio * b2Cross(rD, u);
- JwB = m_ratio * b2Cross(rB, u);
- mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * JwD * JwD + m_iB * JwB * JwB;
- b2Vec2 pD = m_localAnchorD - m_lcD;
- b2Vec2 pB = b2MulT(qD, rB + (cB - cD));
- coordinateB = b2Dot(pB - pD, m_localAxisD);
- }
- float C = (coordinateA + m_ratio * coordinateB) - m_constant;
- float impulse = 0.0f;
- if (mass > 0.0f) {
- impulse = -C / mass;
- }
- cA += m_mA * impulse * JvAC;
- aA += m_iA * impulse * JwA;
- cB += m_mB * impulse * JvBD;
- aB += m_iB * impulse * JwB;
- cC -= m_mC * impulse * JvAC;
- aC -= m_iC * impulse * JwC;
- cD -= m_mD * impulse * JvBD;
- aD -= m_iD * impulse * JwD;
- data.positions[m_indexA].c = cA;
- data.positions[m_indexA].a = aA;
- data.positions[m_indexB].c = cB;
- data.positions[m_indexB].a = aB;
- data.positions[m_indexC].c = cC;
- data.positions[m_indexC].a = aC;
- data.positions[m_indexD].c = cD;
- data.positions[m_indexD].a = aD;
- // TODO_ERIN not implemented
- return linearError < b2_linearSlop;
- }
- b2Vec2 b2GearJoint::GetAnchorA() const {
- return m_bodyA->GetWorldPoint(m_localAnchorA);
- }
- b2Vec2 b2GearJoint::GetAnchorB() const {
- return m_bodyB->GetWorldPoint(m_localAnchorB);
- }
- b2Vec2 b2GearJoint::GetReactionForce(float inv_dt) const {
- b2Vec2 P = m_impulse * m_JvAC;
- return inv_dt * P;
- }
- float b2GearJoint::GetReactionTorque(float inv_dt) const {
- float L = m_impulse * m_JwA;
- return inv_dt * L;
- }
- void b2GearJoint::SetRatio(float ratio) {
- b2Assert(b2IsValid(ratio));
- m_ratio = ratio;
- }
- float b2GearJoint::GetRatio() const {
- return m_ratio;
- }
- void b2GearJoint::Dump() {
- int32 indexA = m_bodyA->m_islandIndex;
- int32 indexB = m_bodyB->m_islandIndex;
- int32 index1 = m_joint1->m_index;
- int32 index2 = m_joint2->m_index;
- b2Dump(" b2GearJointDef jd;\n");
- b2Dump(" jd.bodyA = bodies[%d];\n", indexA);
- b2Dump(" jd.bodyB = bodies[%d];\n", indexB);
- b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected);
- b2Dump(" jd.joint1 = joints[%d];\n", index1);
- b2Dump(" jd.joint2 = joints[%d];\n", index2);
- b2Dump(" jd.ratio = %.9g;\n", m_ratio);
- b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_contact.h"
- //#include "box2d/b2_distance.h"
- //#include "box2d/b2_fixture.h"
- //#include "box2d/b2_joint.h"
- //#include "box2d/b2_stack_allocator.h"
- //#include "box2d/b2_timer.h"
- //#include "box2d/b2_world.h"
- //#include "b2_island.h"
- //#include "dynamics/b2_contact_solver.h"
- /*
- Position Correction Notes
- =========================
- I tried the several algorithms for position correction of the 2D revolute joint.
- I looked at these systems:
- - simple pendulum (1m diameter sphere on massless 5m stick) with initial angular velocity of 100 rad/s.
- - suspension bridge with 30 1m long planks of length 1m.
- - multi-link chain with 30 1m long links.
- Here are the algorithms:
- Baumgarte - A fraction of the position error is added to the velocity error. There is no
- separate position solver.
- Pseudo Velocities - After the velocity solver and position integration,
- the position error, Jacobian, and effective mass are recomputed. Then
- the velocity constraints are solved with pseudo velocities and a fraction
- of the position error is added to the pseudo velocity error. The pseudo
- velocities are initialized to zero and there is no warm-starting. After
- the position solver, the pseudo velocities are added to the positions.
- This is also called the First Order World method or the Position LCP method.
- Modified Nonlinear Gauss-Seidel (NGS) - Like Pseudo Velocities except the
- position error is re-computed for each constraint and the positions are updated
- after the constraint is solved. The radius vectors (aka Jacobians) are
- re-computed too (otherwise the algorithm has horrible instability). The pseudo
- velocity states are not needed because they are effectively zero at the beginning
- of each iteration. Since we have the current position error, we allow the
- iterations to terminate early if the error becomes smaller than b2_linearSlop.
- Full NGS or just NGS - Like Modified NGS except the effective mass are re-computed
- each time a constraint is solved.
- Here are the results:
- Baumgarte - this is the cheapest algorithm but it has some stability problems,
- especially with the bridge. The chain links separate easily close to the root
- and they jitter as they struggle to pull together. This is one of the most common
- methods in the field. The big drawback is that the position correction artificially
- affects the momentum, thus leading to instabilities and false bounce. I used a
- bias factor of 0.2. A larger bias factor makes the bridge less stable, a smaller
- factor makes joints and contacts more spongy.
- Pseudo Velocities - the is more stable than the Baumgarte method. The bridge is
- stable. However, joints still separate with large angular velocities. Drag the
- simple pendulum in a circle quickly and the joint will separate. The chain separates
- easily and does not recover. I used a bias factor of 0.2. A larger value lead to
- the bridge collapsing when a heavy cube drops on it.
- Modified NGS - this algorithm is better in some ways than Baumgarte and Pseudo
- Velocities, but in other ways it is worse. The bridge and chain are much more
- stable, but the simple pendulum goes unstable at high angular velocities.
- Full NGS - stable in all tests. The joints display good stiffness. The bridge
- still sags, but this is better than infinite forces.
- Recommendations
- Pseudo Velocities are not really worthwhile because the bridge and chain cannot
- recover from joint separation. In other cases the benefit over Baumgarte is small.
- Modified NGS is not a robust method for the revolute joint due to the violent
- instability seen in the simple pendulum. Perhaps it is viable with other constraint
- types, especially scalar constraints where the effective mass is a scalar.
- This leaves Baumgarte and Full NGS. Baumgarte has small, but manageable instabilities
- and is very fast. I don't think we can escape Baumgarte, especially in highly
- demanding cases where high constraint fidelity is not needed.
- Full NGS is robust and easy on the eyes. I recommend this as an option for
- higher fidelity simulation and certainly for suspension bridges and long chains.
- Full NGS might be a good choice for ragdolls, especially motorized ragdolls where
- joint separation can be problematic. The number of NGS iterations can be reduced
- for better performance without harming robustness much.
- Each joint in a can be handled differently in the position solver. So I recommend
- a system where the user can select the algorithm on a per joint basis. I would
- probably default to the slower Full NGS and let the user select the faster
- Baumgarte method in performance critical scenarios.
- */
- /*
- Cache Performance
- The Box2D solvers are dominated by cache misses. Data structures are designed
- to increase the number of cache hits. Much of misses are due to random access
- to body data. The constraint structures are iterated over linearly, which leads
- to few cache misses.
- The bodies are not accessed during iteration. Instead read only data, such as
- the mass values are stored with the constraints. The mutable data are the constraint
- impulses and the bodies velocities/positions. The impulses are held inside the
- constraint structures. The body velocities/positions are held in compact, temporary
- arrays to increase the number of cache hits. Linear and angular velocity are
- stored in a single array since multiple arrays lead to multiple misses.
- */
- /*
- 2D Rotation
- R = [cos(theta) -sin(theta)]
- [sin(theta) cos(theta) ]
- thetaDot = omega
- Let q1 = cos(theta), q2 = sin(theta).
- R = [q1 -q2]
- [q2 q1]
- q1Dot = -thetaDot * q2
- q2Dot = thetaDot * q1
- q1_new = q1_old - dt * w * q2
- q2_new = q2_old + dt * w * q1
- then normalize.
- This might be faster than computing sin+cos.
- However, we can compute sin+cos of the same angle fast.
- */
- b2Island::b2Island(
- int32 bodyCapacity,
- int32 contactCapacity,
- int32 jointCapacity,
- b2StackAllocator* allocator,
- b2ContactListener* listener) {
- m_bodyCapacity = bodyCapacity;
- m_contactCapacity = contactCapacity;
- m_jointCapacity = jointCapacity;
- m_bodyCount = 0;
- m_contactCount = 0;
- m_jointCount = 0;
- m_allocator = allocator;
- m_listener = listener;
- m_bodies = (b2Body**)m_allocator->Allocate(bodyCapacity * sizeof(b2Body*));
- m_contacts = (b2Contact**)m_allocator->Allocate(contactCapacity * sizeof(b2Contact*));
- m_joints = (b2Joint**)m_allocator->Allocate(jointCapacity * sizeof(b2Joint*));
- m_velocities = (b2Velocity*)m_allocator->Allocate(m_bodyCapacity * sizeof(b2Velocity));
- m_positions = (b2Position*)m_allocator->Allocate(m_bodyCapacity * sizeof(b2Position));
- }
- b2Island::~b2Island() {
- // Warning: the order should reverse the constructor order.
- m_allocator->Free(m_positions);
- m_allocator->Free(m_velocities);
- m_allocator->Free(m_joints);
- m_allocator->Free(m_contacts);
- m_allocator->Free(m_bodies);
- }
- void b2Island::Solve(b2Profile* profile, const b2TimeStep& step, const b2Vec2& gravity, bool allowSleep) {
- b2Timer timer;
- float h = step.dt;
- // Integrate velocities and apply damping. Initialize the body state.
- for (int32 i = 0; i < m_bodyCount; ++i) {
- b2Body* b = m_bodies[i];
- b2Vec2 c = b->m_sweep.c;
- float a = b->m_sweep.a;
- b2Vec2 v = b->m_linearVelocity;
- float w = b->m_angularVelocity;
- // Store positions for continuous collision.
- b->m_sweep.c0 = b->m_sweep.c;
- b->m_sweep.a0 = b->m_sweep.a;
- if (b->m_type == b2_dynamicBody) {
- // Integrate velocities.
- v += h * b->m_invMass * (b->m_gravityScale * b->m_mass * gravity + b->m_force);
- w += h * b->m_invI * b->m_torque;
- // Apply damping.
- // ODE: dv/dt + c * v = 0
- // Solution: v(t) = v0 * exp(-c * t)
- // Time step: v(t + dt) = v0 * exp(-c * (t + dt)) = v0 * exp(-c * t) * exp(-c * dt) = v * exp(-c * dt)
- // v2 = exp(-c * dt) * v1
- // Pade approximation:
- // v2 = v1 * 1 / (1 + c * dt)
- v *= 1.0f / (1.0f + h * b->m_linearDamping);
- w *= 1.0f / (1.0f + h * b->m_angularDamping);
- }
- m_positions[i].c = c;
- m_positions[i].a = a;
- m_velocities[i].v = v;
- m_velocities[i].w = w;
- }
- timer.Reset();
- // Solver data
- b2SolverData solverData;
- solverData.step = step;
- solverData.positions = m_positions;
- solverData.velocities = m_velocities;
- // Initialize velocity constraints.
- b2ContactSolverDef contactSolverDef;
- contactSolverDef.step = step;
- contactSolverDef.contacts = m_contacts;
- contactSolverDef.count = m_contactCount;
- contactSolverDef.positions = m_positions;
- contactSolverDef.velocities = m_velocities;
- contactSolverDef.allocator = m_allocator;
- b2ContactSolver contactSolver(&contactSolverDef);
- contactSolver.InitializeVelocityConstraints();
- if (step.warmStarting) {
- contactSolver.WarmStart();
- }
- for (int32 i = 0; i < m_jointCount; ++i) {
- m_joints[i]->InitVelocityConstraints(solverData);
- }
- profile->solveInit = timer.GetMilliseconds();
- // Solve velocity constraints
- timer.Reset();
- for (int32 i = 0; i < step.velocityIterations; ++i) {
- for (int32 j = 0; j < m_jointCount; ++j) {
- m_joints[j]->SolveVelocityConstraints(solverData);
- }
- contactSolver.SolveVelocityConstraints();
- }
- // Store impulses for warm starting
- contactSolver.StoreImpulses();
- profile->solveVelocity = timer.GetMilliseconds();
- // Integrate positions
- for (int32 i = 0; i < m_bodyCount; ++i) {
- b2Vec2 c = m_positions[i].c;
- float a = m_positions[i].a;
- b2Vec2 v = m_velocities[i].v;
- float w = m_velocities[i].w;
- // Check for large velocities
- b2Vec2 translation = h * v;
- if (b2Dot(translation, translation) > b2_maxTranslationSquared) {
- float ratio = b2_maxTranslation / translation.Length();
- v *= ratio;
- }
- float rotation = h * w;
- if (rotation * rotation > b2_maxRotationSquared) {
- float ratio = b2_maxRotation / b2Abs(rotation);
- w *= ratio;
- }
- // Integrate
- c += h * v;
- a += h * w;
- m_positions[i].c = c;
- m_positions[i].a = a;
- m_velocities[i].v = v;
- m_velocities[i].w = w;
- }
- // Solve position constraints
- timer.Reset();
- bool positionSolved = false;
- for (int32 i = 0; i < step.positionIterations; ++i) {
- bool contactsOkay = contactSolver.SolvePositionConstraints();
- bool jointsOkay = true;
- for (int32 j = 0; j < m_jointCount; ++j) {
- bool jointOkay = m_joints[j]->SolvePositionConstraints(solverData);
- jointsOkay = jointsOkay && jointOkay;
- }
- if (contactsOkay && jointsOkay) {
- // Exit early if the position errors are small.
- positionSolved = true;
- break;
- }
- }
- // Copy state buffers back to the bodies
- for (int32 i = 0; i < m_bodyCount; ++i) {
- b2Body* body = m_bodies[i];
- body->m_sweep.c = m_positions[i].c;
- body->m_sweep.a = m_positions[i].a;
- body->m_linearVelocity = m_velocities[i].v;
- body->m_angularVelocity = m_velocities[i].w;
- body->SynchronizeTransform();
- }
- profile->solvePosition = timer.GetMilliseconds();
- Report(contactSolver.m_velocityConstraints);
- if (allowSleep) {
- float minSleepTime = b2_maxFloat;
- const float linTolSqr = b2_linearSleepTolerance * b2_linearSleepTolerance;
- const float angTolSqr = b2_angularSleepTolerance * b2_angularSleepTolerance;
- for (int32 i = 0; i < m_bodyCount; ++i) {
- b2Body* b = m_bodies[i];
- if (b->GetType() == b2_staticBody) {
- continue;
- }
- if ((b->m_flags & b2Body::e_autoSleepFlag) == 0 ||
- b->m_angularVelocity * b->m_angularVelocity > angTolSqr ||
- b2Dot(b->m_linearVelocity, b->m_linearVelocity) > linTolSqr) {
- b->m_sleepTime = 0.0f;
- minSleepTime = 0.0f;
- } else {
- b->m_sleepTime += h;
- minSleepTime = b2Min(minSleepTime, b->m_sleepTime);
- }
- }
- if (minSleepTime >= b2_timeToSleep && positionSolved) {
- for (int32 i = 0; i < m_bodyCount; ++i) {
- b2Body* b = m_bodies[i];
- b->SetAwake(false);
- }
- }
- }
- }
- void b2Island::SolveTOI(const b2TimeStep& subStep, int32 toiIndexA, int32 toiIndexB) {
- b2Assert(toiIndexA < m_bodyCount);
- b2Assert(toiIndexB < m_bodyCount);
- // Initialize the body state.
- for (int32 i = 0; i < m_bodyCount; ++i) {
- b2Body* b = m_bodies[i];
- m_positions[i].c = b->m_sweep.c;
- m_positions[i].a = b->m_sweep.a;
- m_velocities[i].v = b->m_linearVelocity;
- m_velocities[i].w = b->m_angularVelocity;
- }
- b2ContactSolverDef contactSolverDef;
- contactSolverDef.contacts = m_contacts;
- contactSolverDef.count = m_contactCount;
- contactSolverDef.allocator = m_allocator;
- contactSolverDef.step = subStep;
- contactSolverDef.positions = m_positions;
- contactSolverDef.velocities = m_velocities;
- b2ContactSolver contactSolver(&contactSolverDef);
- // Solve position constraints.
- for (int32 i = 0; i < subStep.positionIterations; ++i) {
- bool contactsOkay = contactSolver.SolveTOIPositionConstraints(toiIndexA, toiIndexB);
- if (contactsOkay) {
- break;
- }
- }
- #if 0
- // Is the new position really safe?
- for (int32 i = 0; i < m_contactCount; ++i) {
- b2Contact* c = m_contacts[i];
- b2Fixture* fA = c->GetFixtureA();
- b2Fixture* fB = c->GetFixtureB();
- b2Body* bA = fA->GetBody();
- b2Body* bB = fB->GetBody();
- int32 indexA = c->GetChildIndexA();
- int32 indexB = c->GetChildIndexB();
- b2DistanceInput input;
- input.proxyA.Set(fA->GetShape(), indexA);
- input.proxyB.Set(fB->GetShape(), indexB);
- input.transformA = bA->GetTransform();
- input.transformB = bB->GetTransform();
- input.useRadii = false;
- b2DistanceOutput output;
- b2SimplexCache cache;
- cache.count = 0;
- b2Distance(&output, &cache, &input);
- if (output.distance == 0 || cache.count == 3) {
- cache.count += 0;
- }
- }
- #endif
- // Leap of faith to new safe state.
- m_bodies[toiIndexA]->m_sweep.c0 = m_positions[toiIndexA].c;
- m_bodies[toiIndexA]->m_sweep.a0 = m_positions[toiIndexA].a;
- m_bodies[toiIndexB]->m_sweep.c0 = m_positions[toiIndexB].c;
- m_bodies[toiIndexB]->m_sweep.a0 = m_positions[toiIndexB].a;
- // No warm starting is needed for TOI events because warm
- // starting impulses were applied in the discrete solver.
- contactSolver.InitializeVelocityConstraints();
- // Solve velocity constraints.
- for (int32 i = 0; i < subStep.velocityIterations; ++i) {
- contactSolver.SolveVelocityConstraints();
- }
- // Don't store the TOI contact forces for warm starting
- // because they can be quite large.
- float h = subStep.dt;
- // Integrate positions
- for (int32 i = 0; i < m_bodyCount; ++i) {
- b2Vec2 c = m_positions[i].c;
- float a = m_positions[i].a;
- b2Vec2 v = m_velocities[i].v;
- float w = m_velocities[i].w;
- // Check for large velocities
- b2Vec2 translation = h * v;
- if (b2Dot(translation, translation) > b2_maxTranslationSquared) {
- float ratio = b2_maxTranslation / translation.Length();
- v *= ratio;
- }
- float rotation = h * w;
- if (rotation * rotation > b2_maxRotationSquared) {
- float ratio = b2_maxRotation / b2Abs(rotation);
- w *= ratio;
- }
- // Integrate
- c += h * v;
- a += h * w;
- m_positions[i].c = c;
- m_positions[i].a = a;
- m_velocities[i].v = v;
- m_velocities[i].w = w;
- // Sync bodies
- b2Body* body = m_bodies[i];
- body->m_sweep.c = c;
- body->m_sweep.a = a;
- body->m_linearVelocity = v;
- body->m_angularVelocity = w;
- body->SynchronizeTransform();
- }
- Report(contactSolver.m_velocityConstraints);
- }
- void b2Island::Report(const b2ContactVelocityConstraint* constraints) {
- if (m_listener == nullptr) {
- return;
- }
- for (int32 i = 0; i < m_contactCount; ++i) {
- b2Contact* c = m_contacts[i];
- const b2ContactVelocityConstraint* vc = constraints + i;
- b2ContactImpulse impulse;
- impulse.count = vc->pointCount;
- for (int32 j = 0; j < vc->pointCount; ++j) {
- impulse.normalImpulses[j] = vc->points[j].normalImpulse;
- impulse.tangentImpulses[j] = vc->points[j].tangentImpulse;
- }
- m_listener->PostSolve(c, &impulse);
- }
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_block_allocator.h"
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_distance_joint.h"
- //#include "box2d/b2_draw.h"
- //#include "box2d/b2_friction_joint.h"
- //#include "box2d/b2_gear_joint.h"
- //#include "box2d/b2_motor_joint.h"
- //#include "box2d/b2_mouse_joint.h"
- //#include "box2d/b2_prismatic_joint.h"
- //#include "box2d/b2_pulley_joint.h"
- //#include "box2d/b2_revolute_joint.h"
- //#include "box2d/b2_weld_joint.h"
- //#include "box2d/b2_wheel_joint.h"
- //#include "box2d/b2_world.h"
- #include <new>
- void b2LinearStiffness(float& stiffness, float& damping,
- float frequencyHertz, float dampingRatio,
- const b2Body* bodyA, const b2Body* bodyB) {
- float massA = bodyA->GetMass();
- float massB = bodyB->GetMass();
- float mass;
- if (massA > 0.0f && massB > 0.0f) {
- mass = massA * massB / (massA + massB);
- } else if (massA > 0.0f) {
- mass = massA;
- } else {
- mass = massB;
- }
- float omega = 2.0f * b2_pi * frequencyHertz;
- stiffness = mass * omega * omega;
- damping = 2.0f * mass * dampingRatio * omega;
- }
- void b2AngularStiffness(float& stiffness, float& damping,
- float frequencyHertz, float dampingRatio,
- const b2Body* bodyA, const b2Body* bodyB) {
- float IA = bodyA->GetInertia();
- float IB = bodyB->GetInertia();
- float I;
- if (IA > 0.0f && IB > 0.0f) {
- I = IA * IB / (IA + IB);
- } else if (IA > 0.0f) {
- I = IA;
- } else {
- I = IB;
- }
- float omega = 2.0f * b2_pi * frequencyHertz;
- stiffness = I * omega * omega;
- damping = 2.0f * I * dampingRatio * omega;
- }
- b2Joint* b2Joint::Create(const b2JointDef* def, b2BlockAllocator* allocator) {
- b2Joint* joint = nullptr;
- switch (def->type) {
- case e_distanceJoint:
- {
- void* mem = allocator->Allocate(sizeof(b2DistanceJoint));
- joint = new (mem) b2DistanceJoint(static_cast<const b2DistanceJointDef*>(def));
- }
- break;
- case e_mouseJoint:
- {
- void* mem = allocator->Allocate(sizeof(b2MouseJoint));
- joint = new (mem) b2MouseJoint(static_cast<const b2MouseJointDef*>(def));
- }
- break;
- case e_prismaticJoint:
- {
- void* mem = allocator->Allocate(sizeof(b2PrismaticJoint));
- joint = new (mem) b2PrismaticJoint(static_cast<const b2PrismaticJointDef*>(def));
- }
- break;
- case e_revoluteJoint:
- {
- void* mem = allocator->Allocate(sizeof(b2RevoluteJoint));
- joint = new (mem) b2RevoluteJoint(static_cast<const b2RevoluteJointDef*>(def));
- }
- break;
- case e_pulleyJoint:
- {
- void* mem = allocator->Allocate(sizeof(b2PulleyJoint));
- joint = new (mem) b2PulleyJoint(static_cast<const b2PulleyJointDef*>(def));
- }
- break;
- case e_gearJoint:
- {
- void* mem = allocator->Allocate(sizeof(b2GearJoint));
- joint = new (mem) b2GearJoint(static_cast<const b2GearJointDef*>(def));
- }
- break;
- case e_wheelJoint:
- {
- void* mem = allocator->Allocate(sizeof(b2WheelJoint));
- joint = new (mem) b2WheelJoint(static_cast<const b2WheelJointDef*>(def));
- }
- break;
- case e_weldJoint:
- {
- void* mem = allocator->Allocate(sizeof(b2WeldJoint));
- joint = new (mem) b2WeldJoint(static_cast<const b2WeldJointDef*>(def));
- }
- break;
- case e_frictionJoint:
- {
- void* mem = allocator->Allocate(sizeof(b2FrictionJoint));
- joint = new (mem) b2FrictionJoint(static_cast<const b2FrictionJointDef*>(def));
- }
- break;
- case e_motorJoint:
- {
- void* mem = allocator->Allocate(sizeof(b2MotorJoint));
- joint = new (mem) b2MotorJoint(static_cast<const b2MotorJointDef*>(def));
- }
- break;
- default:
- b2Assert(false);
- break;
- }
- return joint;
- }
- void b2Joint::Destroy(b2Joint* joint, b2BlockAllocator* allocator) {
- joint->~b2Joint();
- switch (joint->m_type) {
- case e_distanceJoint:
- allocator->Free(joint, sizeof(b2DistanceJoint));
- break;
- case e_mouseJoint:
- allocator->Free(joint, sizeof(b2MouseJoint));
- break;
- case e_prismaticJoint:
- allocator->Free(joint, sizeof(b2PrismaticJoint));
- break;
- case e_revoluteJoint:
- allocator->Free(joint, sizeof(b2RevoluteJoint));
- break;
- case e_pulleyJoint:
- allocator->Free(joint, sizeof(b2PulleyJoint));
- break;
- case e_gearJoint:
- allocator->Free(joint, sizeof(b2GearJoint));
- break;
- case e_wheelJoint:
- allocator->Free(joint, sizeof(b2WheelJoint));
- break;
- case e_weldJoint:
- allocator->Free(joint, sizeof(b2WeldJoint));
- break;
- case e_frictionJoint:
- allocator->Free(joint, sizeof(b2FrictionJoint));
- break;
- case e_motorJoint:
- allocator->Free(joint, sizeof(b2MotorJoint));
- break;
- default:
- b2Assert(false);
- break;
- }
- }
- b2Joint::b2Joint(const b2JointDef* def) {
- b2Assert(def->bodyA != def->bodyB);
- m_type = def->type;
- m_prev = nullptr;
- m_next = nullptr;
- m_bodyA = def->bodyA;
- m_bodyB = def->bodyB;
- m_index = 0;
- m_collideConnected = def->collideConnected;
- m_islandFlag = false;
- m_userData = def->userData;
- m_edgeA.joint = nullptr;
- m_edgeA.other = nullptr;
- m_edgeA.prev = nullptr;
- m_edgeA.next = nullptr;
- m_edgeB.joint = nullptr;
- m_edgeB.other = nullptr;
- m_edgeB.prev = nullptr;
- m_edgeB.next = nullptr;
- }
- bool b2Joint::IsEnabled() const {
- return m_bodyA->IsEnabled() && m_bodyB->IsEnabled();
- }
- void b2Joint::Draw(b2Draw* draw) const {
- const b2Transform& xf1 = m_bodyA->GetTransform();
- const b2Transform& xf2 = m_bodyB->GetTransform();
- b2Vec2 x1 = xf1.p;
- b2Vec2 x2 = xf2.p;
- b2Vec2 p1 = GetAnchorA();
- b2Vec2 p2 = GetAnchorB();
- b2Color color(0.5f, 0.8f, 0.8f);
- switch (m_type) {
- case e_distanceJoint:
- draw->DrawSegment(p1, p2, color);
- break;
- case e_pulleyJoint:
- {
- b2PulleyJoint* pulley = (b2PulleyJoint*)this;
- b2Vec2 s1 = pulley->GetGroundAnchorA();
- b2Vec2 s2 = pulley->GetGroundAnchorB();
- draw->DrawSegment(s1, p1, color);
- draw->DrawSegment(s2, p2, color);
- draw->DrawSegment(s1, s2, color);
- }
- break;
- case e_mouseJoint:
- {
- b2Color c;
- c.Set(0.0f, 1.0f, 0.0f);
- draw->DrawPoint(p1, 4.0f, c);
- draw->DrawPoint(p2, 4.0f, c);
- c.Set(0.8f, 0.8f, 0.8f);
- draw->DrawSegment(p1, p2, c);
- }
- break;
- default:
- draw->DrawSegment(x1, p1, color);
- draw->DrawSegment(p1, p2, color);
- draw->DrawSegment(x2, p2, color);
- }
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_motor_joint.h"
- //#include "box2d/b2_time_step.h"
- // Point-to-point constraint
- // Cdot = v2 - v1
- // = v2 + cross(w2, r2) - v1 - cross(w1, r1)
- // J = [-I -r1_skew I r2_skew ]
- // Identity used:
- // w k % (rx i + ry j) = w * (-ry i + rx j)
- //
- // r1 = offset - c1
- // r2 = -c2
- // Angle constraint
- // Cdot = w2 - w1
- // J = [0 0 -1 0 0 1]
- // K = invI1 + invI2
- void b2MotorJointDef::Initialize(b2Body* bA, b2Body* bB) {
- bodyA = bA;
- bodyB = bB;
- b2Vec2 xB = bodyB->GetPosition();
- linearOffset = bodyA->GetLocalPoint(xB);
- float angleA = bodyA->GetAngle();
- float angleB = bodyB->GetAngle();
- angularOffset = angleB - angleA;
- }
- b2MotorJoint::b2MotorJoint(const b2MotorJointDef* def)
- : b2Joint(def) {
- m_linearOffset = def->linearOffset;
- m_angularOffset = def->angularOffset;
- m_linearImpulse.SetZero();
- m_angularImpulse = 0.0f;
- m_maxForce = def->maxForce;
- m_maxTorque = def->maxTorque;
- m_correctionFactor = def->correctionFactor;
- }
- void b2MotorJoint::InitVelocityConstraints(const b2SolverData& data) {
- m_indexA = m_bodyA->m_islandIndex;
- m_indexB = m_bodyB->m_islandIndex;
- m_localCenterA = m_bodyA->m_sweep.localCenter;
- m_localCenterB = m_bodyB->m_sweep.localCenter;
- m_invMassA = m_bodyA->m_invMass;
- m_invMassB = m_bodyB->m_invMass;
- m_invIA = m_bodyA->m_invI;
- m_invIB = m_bodyB->m_invI;
- b2Vec2 cA = data.positions[m_indexA].c;
- float aA = data.positions[m_indexA].a;
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- b2Vec2 cB = data.positions[m_indexB].c;
- float aB = data.positions[m_indexB].a;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- b2Rot qA(aA), qB(aB);
- // Compute the effective mass matrix.
- m_rA = b2Mul(qA, m_linearOffset - m_localCenterA);
- m_rB = b2Mul(qB, -m_localCenterB);
- // J = [-I -r1_skew I r2_skew]
- // r_skew = [-ry; rx]
- // Matlab
- // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
- // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
- // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
- float mA = m_invMassA, mB = m_invMassB;
- float iA = m_invIA, iB = m_invIB;
- // Upper 2 by 2 of K for point to point
- b2Mat22 K;
- K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y;
- K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y;
- K.ey.x = K.ex.y;
- K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x;
- m_linearMass = K.GetInverse();
- m_angularMass = iA + iB;
- if (m_angularMass > 0.0f) {
- m_angularMass = 1.0f / m_angularMass;
- }
- m_linearError = cB + m_rB - cA - m_rA;
- m_angularError = aB - aA - m_angularOffset;
- if (data.step.warmStarting) {
- // Scale impulses to support a variable time step.
- m_linearImpulse *= data.step.dtRatio;
- m_angularImpulse *= data.step.dtRatio;
- b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y);
- vA -= mA * P;
- wA -= iA * (b2Cross(m_rA, P) + m_angularImpulse);
- vB += mB * P;
- wB += iB * (b2Cross(m_rB, P) + m_angularImpulse);
- } else {
- m_linearImpulse.SetZero();
- m_angularImpulse = 0.0f;
- }
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- void b2MotorJoint::SolveVelocityConstraints(const b2SolverData& data) {
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- float mA = m_invMassA, mB = m_invMassB;
- float iA = m_invIA, iB = m_invIB;
- float h = data.step.dt;
- float inv_h = data.step.inv_dt;
- // Solve angular friction
- {
- float Cdot = wB - wA + inv_h * m_correctionFactor * m_angularError;
- float impulse = -m_angularMass * Cdot;
- float oldImpulse = m_angularImpulse;
- float maxImpulse = h * m_maxTorque;
- m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse);
- impulse = m_angularImpulse - oldImpulse;
- wA -= iA * impulse;
- wB += iB * impulse;
- }
- // Solve linear friction
- {
- b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA) + inv_h * m_correctionFactor * m_linearError;
- b2Vec2 impulse = -b2Mul(m_linearMass, Cdot);
- b2Vec2 oldImpulse = m_linearImpulse;
- m_linearImpulse += impulse;
- float maxImpulse = h * m_maxForce;
- if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse) {
- m_linearImpulse.Normalize();
- m_linearImpulse *= maxImpulse;
- }
- impulse = m_linearImpulse - oldImpulse;
- vA -= mA * impulse;
- wA -= iA * b2Cross(m_rA, impulse);
- vB += mB * impulse;
- wB += iB * b2Cross(m_rB, impulse);
- }
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- bool b2MotorJoint::SolvePositionConstraints(const b2SolverData& data) {
- B2_NOT_USED(data);
- return true;
- }
- b2Vec2 b2MotorJoint::GetAnchorA() const {
- return m_bodyA->GetPosition();
- }
- b2Vec2 b2MotorJoint::GetAnchorB() const {
- return m_bodyB->GetPosition();
- }
- b2Vec2 b2MotorJoint::GetReactionForce(float inv_dt) const {
- return inv_dt * m_linearImpulse;
- }
- float b2MotorJoint::GetReactionTorque(float inv_dt) const {
- return inv_dt * m_angularImpulse;
- }
- void b2MotorJoint::SetMaxForce(float force) {
- b2Assert(b2IsValid(force) && force >= 0.0f);
- m_maxForce = force;
- }
- float b2MotorJoint::GetMaxForce() const {
- return m_maxForce;
- }
- void b2MotorJoint::SetMaxTorque(float torque) {
- b2Assert(b2IsValid(torque) && torque >= 0.0f);
- m_maxTorque = torque;
- }
- float b2MotorJoint::GetMaxTorque() const {
- return m_maxTorque;
- }
- void b2MotorJoint::SetCorrectionFactor(float factor) {
- b2Assert(b2IsValid(factor) && 0.0f <= factor && factor <= 1.0f);
- m_correctionFactor = factor;
- }
- float b2MotorJoint::GetCorrectionFactor() const {
- return m_correctionFactor;
- }
- void b2MotorJoint::SetLinearOffset(const b2Vec2& linearOffset) {
- if (linearOffset.x != m_linearOffset.x || linearOffset.y != m_linearOffset.y) {
- m_bodyA->SetAwake(true);
- m_bodyB->SetAwake(true);
- m_linearOffset = linearOffset;
- }
- }
- const b2Vec2& b2MotorJoint::GetLinearOffset() const {
- return m_linearOffset;
- }
- void b2MotorJoint::SetAngularOffset(float angularOffset) {
- if (angularOffset != m_angularOffset) {
- m_bodyA->SetAwake(true);
- m_bodyB->SetAwake(true);
- m_angularOffset = angularOffset;
- }
- }
- float b2MotorJoint::GetAngularOffset() const {
- return m_angularOffset;
- }
- void b2MotorJoint::Dump() {
- int32 indexA = m_bodyA->m_islandIndex;
- int32 indexB = m_bodyB->m_islandIndex;
- b2Dump(" b2MotorJointDef jd;\n");
- b2Dump(" jd.bodyA = bodies[%d];\n", indexA);
- b2Dump(" jd.bodyB = bodies[%d];\n", indexB);
- b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected);
- b2Dump(" jd.linearOffset.Set(%.9g, %.9g);\n", m_linearOffset.x, m_linearOffset.y);
- b2Dump(" jd.angularOffset = %.9g;\n", m_angularOffset);
- b2Dump(" jd.maxForce = %.9g;\n", m_maxForce);
- b2Dump(" jd.maxTorque = %.9g;\n", m_maxTorque);
- b2Dump(" jd.correctionFactor = %.9g;\n", m_correctionFactor);
- b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_mouse_joint.h"
- //#include "box2d/b2_time_step.h"
- // p = attached point, m = mouse point
- // C = p - m
- // Cdot = v
- // = v + cross(w, r)
- // J = [I r_skew]
- // Identity used:
- // w k % (rx i + ry j) = w * (-ry i + rx j)
- b2MouseJoint::b2MouseJoint(const b2MouseJointDef* def)
- : b2Joint(def) {
- m_targetA = def->target;
- m_localAnchorB = b2MulT(m_bodyB->GetTransform(), m_targetA);
- m_maxForce = def->maxForce;
- m_stiffness = def->stiffness;
- m_damping = def->damping;
- m_impulse.SetZero();
- m_beta = 0.0f;
- m_gamma = 0.0f;
- }
- void b2MouseJoint::SetTarget(const b2Vec2& target) {
- if (target != m_targetA) {
- m_bodyB->SetAwake(true);
- m_targetA = target;
- }
- }
- const b2Vec2& b2MouseJoint::GetTarget() const {
- return m_targetA;
- }
- void b2MouseJoint::SetMaxForce(float force) {
- m_maxForce = force;
- }
- float b2MouseJoint::GetMaxForce() const {
- return m_maxForce;
- }
- void b2MouseJoint::InitVelocityConstraints(const b2SolverData& data) {
- m_indexB = m_bodyB->m_islandIndex;
- m_localCenterB = m_bodyB->m_sweep.localCenter;
- m_invMassB = m_bodyB->m_invMass;
- m_invIB = m_bodyB->m_invI;
- b2Vec2 cB = data.positions[m_indexB].c;
- float aB = data.positions[m_indexB].a;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- b2Rot qB(aB);
- float mass = m_bodyB->GetMass();
- float d = m_damping;
- float k = m_stiffness;
- // magic formulas
- // gamma has units of inverse mass.
- // beta has units of inverse time.
- float h = data.step.dt;
- m_gamma = h * (d + h * k);
- if (m_gamma != 0.0f) {
- m_gamma = 1.0f / m_gamma;
- }
- m_beta = h * k * m_gamma;
- // Compute the effective mass matrix.
- m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
- // K = [(1/m1 + 1/m2) * eye(2) - skew(r1) * invI1 * skew(r1) - skew(r2) * invI2 * skew(r2)]
- // = [1/m1+1/m2 0 ] + invI1 * [r1.y*r1.y -r1.x*r1.y] + invI2 * [r1.y*r1.y -r1.x*r1.y]
- // [ 0 1/m1+1/m2] [-r1.x*r1.y r1.x*r1.x] [-r1.x*r1.y r1.x*r1.x]
- b2Mat22 K;
- K.ex.x = m_invMassB + m_invIB * m_rB.y * m_rB.y + m_gamma;
- K.ex.y = -m_invIB * m_rB.x * m_rB.y;
- K.ey.x = K.ex.y;
- K.ey.y = m_invMassB + m_invIB * m_rB.x * m_rB.x + m_gamma;
- m_mass = K.GetInverse();
- m_C = cB + m_rB - m_targetA;
- m_C *= m_beta;
- // Cheat with some damping
- wB *= 0.98f;
- if (data.step.warmStarting) {
- m_impulse *= data.step.dtRatio;
- vB += m_invMassB * m_impulse;
- wB += m_invIB * b2Cross(m_rB, m_impulse);
- } else {
- m_impulse.SetZero();
- }
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- void b2MouseJoint::SolveVelocityConstraints(const b2SolverData& data) {
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- // Cdot = v + cross(w, r)
- b2Vec2 Cdot = vB + b2Cross(wB, m_rB);
- b2Vec2 impulse = b2Mul(m_mass, -(Cdot + m_C + m_gamma * m_impulse));
- b2Vec2 oldImpulse = m_impulse;
- m_impulse += impulse;
- float maxImpulse = data.step.dt * m_maxForce;
- if (m_impulse.LengthSquared() > maxImpulse * maxImpulse) {
- m_impulse *= maxImpulse / m_impulse.Length();
- }
- impulse = m_impulse - oldImpulse;
- vB += m_invMassB * impulse;
- wB += m_invIB * b2Cross(m_rB, impulse);
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- bool b2MouseJoint::SolvePositionConstraints(const b2SolverData& data) {
- B2_NOT_USED(data);
- return true;
- }
- b2Vec2 b2MouseJoint::GetAnchorA() const {
- return m_targetA;
- }
- b2Vec2 b2MouseJoint::GetAnchorB() const {
- return m_bodyB->GetWorldPoint(m_localAnchorB);
- }
- b2Vec2 b2MouseJoint::GetReactionForce(float inv_dt) const {
- return inv_dt * m_impulse;
- }
- float b2MouseJoint::GetReactionTorque(float inv_dt) const {
- return inv_dt * 0.0f;
- }
- void b2MouseJoint::ShiftOrigin(const b2Vec2& newOrigin) {
- m_targetA -= newOrigin;
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "b2_polygon_circle_contact.h"
- //#include "box2d/b2_block_allocator.h"
- //#include "box2d/b2_fixture.h"
- #include <new>
- b2Contact* b2PolygonAndCircleContact::Create(b2Fixture* fixtureA, int32, b2Fixture* fixtureB, int32, b2BlockAllocator* allocator) {
- void* mem = allocator->Allocate(sizeof(b2PolygonAndCircleContact));
- return new (mem) b2PolygonAndCircleContact(fixtureA, fixtureB);
- }
- void b2PolygonAndCircleContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) {
- ((b2PolygonAndCircleContact*)contact)->~b2PolygonAndCircleContact();
- allocator->Free(contact, sizeof(b2PolygonAndCircleContact));
- }
- b2PolygonAndCircleContact::b2PolygonAndCircleContact(b2Fixture* fixtureA, b2Fixture* fixtureB)
- : b2Contact(fixtureA, 0, fixtureB, 0) {
- b2Assert(m_fixtureA->GetType() == b2Shape::e_polygon);
- b2Assert(m_fixtureB->GetType() == b2Shape::e_circle);
- }
- void b2PolygonAndCircleContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) {
- b2CollidePolygonAndCircle(manifold,
- (b2PolygonShape*)m_fixtureA->GetShape(), xfA,
- (b2CircleShape*)m_fixtureB->GetShape(), xfB);
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "b2_polygon_contact.h"
- //#include "box2d/b2_block_allocator.h"
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_fixture.h"
- //#include "box2d/b2_time_of_impact.h"
- //#include "box2d/b2_world_callbacks.h"
- #include <new>
- b2Contact* b2PolygonContact::Create(b2Fixture* fixtureA, int32, b2Fixture* fixtureB, int32, b2BlockAllocator* allocator) {
- void* mem = allocator->Allocate(sizeof(b2PolygonContact));
- return new (mem) b2PolygonContact(fixtureA, fixtureB);
- }
- void b2PolygonContact::Destroy(b2Contact* contact, b2BlockAllocator* allocator) {
- ((b2PolygonContact*)contact)->~b2PolygonContact();
- allocator->Free(contact, sizeof(b2PolygonContact));
- }
- b2PolygonContact::b2PolygonContact(b2Fixture* fixtureA, b2Fixture* fixtureB)
- : b2Contact(fixtureA, 0, fixtureB, 0) {
- b2Assert(m_fixtureA->GetType() == b2Shape::e_polygon);
- b2Assert(m_fixtureB->GetType() == b2Shape::e_polygon);
- }
- void b2PolygonContact::Evaluate(b2Manifold* manifold, const b2Transform& xfA, const b2Transform& xfB) {
- b2CollidePolygons(manifold,
- (b2PolygonShape*)m_fixtureA->GetShape(), xfA,
- (b2PolygonShape*)m_fixtureB->GetShape(), xfB);
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_draw.h"
- //#include "box2d/b2_prismatic_joint.h"
- //#include "box2d/b2_time_step.h"
- // Linear constraint (point-to-line)
- // d = p2 - p1 = x2 + r2 - x1 - r1
- // C = dot(perp, d)
- // Cdot = dot(d, cross(w1, perp)) + dot(perp, v2 + cross(w2, r2) - v1 - cross(w1, r1))
- // = -dot(perp, v1) - dot(cross(d + r1, perp), w1) + dot(perp, v2) + dot(cross(r2, perp), v2)
- // J = [-perp, -cross(d + r1, perp), perp, cross(r2,perp)]
- //
- // Angular constraint
- // C = a2 - a1 + a_initial
- // Cdot = w2 - w1
- // J = [0 0 -1 0 0 1]
- //
- // K = J * invM * JT
- //
- // J = [-a -s1 a s2]
- // [0 -1 0 1]
- // a = perp
- // s1 = cross(d + r1, a) = cross(p2 - x1, a)
- // s2 = cross(r2, a) = cross(p2 - x2, a)
- // Motor/Limit linear constraint
- // C = dot(ax1, d)
- // Cdot = -dot(ax1, v1) - dot(cross(d + r1, ax1), w1) + dot(ax1, v2) + dot(cross(r2, ax1), v2)
- // J = [-ax1 -cross(d+r1,ax1) ax1 cross(r2,ax1)]
- // Predictive limit is applied even when the limit is not active.
- // Prevents a constraint speed that can lead to a constraint error in one time step.
- // Want C2 = C1 + h * Cdot >= 0
- // Or:
- // Cdot + C1/h >= 0
- // I do not apply a negative constraint error because that is handled in position correction.
- // So:
- // Cdot + max(C1, 0)/h >= 0
- // Block Solver
- // We develop a block solver that includes the angular and linear constraints. This makes the limit stiffer.
- //
- // The Jacobian has 2 rows:
- // J = [-uT -s1 uT s2] // linear
- // [0 -1 0 1] // angular
- //
- // u = perp
- // s1 = cross(d + r1, u), s2 = cross(r2, u)
- // a1 = cross(d + r1, v), a2 = cross(r2, v)
- void b2PrismaticJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor, const b2Vec2& axis) {
- bodyA = bA;
- bodyB = bB;
- localAnchorA = bodyA->GetLocalPoint(anchor);
- localAnchorB = bodyB->GetLocalPoint(anchor);
- localAxisA = bodyA->GetLocalVector(axis);
- referenceAngle = bodyB->GetAngle() - bodyA->GetAngle();
- }
- b2PrismaticJoint::b2PrismaticJoint(const b2PrismaticJointDef* def)
- : b2Joint(def) {
- m_localAnchorA = def->localAnchorA;
- m_localAnchorB = def->localAnchorB;
- m_localXAxisA = def->localAxisA;
- m_localXAxisA.Normalize();
- m_localYAxisA = b2Cross(1.0f, m_localXAxisA);
- m_referenceAngle = def->referenceAngle;
- m_impulse.SetZero();
- m_axialMass = 0.0f;
- m_motorImpulse = 0.0f;
- m_lowerImpulse = 0.0f;
- m_upperImpulse = 0.0f;
- m_lowerTranslation = def->lowerTranslation;
- m_upperTranslation = def->upperTranslation;
- b2Assert(m_lowerTranslation <= m_upperTranslation);
- m_maxMotorForce = def->maxMotorForce;
- m_motorSpeed = def->motorSpeed;
- m_enableLimit = def->enableLimit;
- m_enableMotor = def->enableMotor;
- m_translation = 0.0f;
- m_axis.SetZero();
- m_perp.SetZero();
- }
- void b2PrismaticJoint::InitVelocityConstraints(const b2SolverData& data) {
- m_indexA = m_bodyA->m_islandIndex;
- m_indexB = m_bodyB->m_islandIndex;
- m_localCenterA = m_bodyA->m_sweep.localCenter;
- m_localCenterB = m_bodyB->m_sweep.localCenter;
- m_invMassA = m_bodyA->m_invMass;
- m_invMassB = m_bodyB->m_invMass;
- m_invIA = m_bodyA->m_invI;
- m_invIB = m_bodyB->m_invI;
- b2Vec2 cA = data.positions[m_indexA].c;
- float aA = data.positions[m_indexA].a;
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- b2Vec2 cB = data.positions[m_indexB].c;
- float aB = data.positions[m_indexB].a;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- b2Rot qA(aA), qB(aB);
- // Compute the effective masses.
- b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
- b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
- b2Vec2 d = (cB - cA) + rB - rA;
- float mA = m_invMassA, mB = m_invMassB;
- float iA = m_invIA, iB = m_invIB;
- // Compute motor Jacobian and effective mass.
- {
- m_axis = b2Mul(qA, m_localXAxisA);
- m_a1 = b2Cross(d + rA, m_axis);
- m_a2 = b2Cross(rB, m_axis);
- m_axialMass = mA + mB + iA * m_a1 * m_a1 + iB * m_a2 * m_a2;
- if (m_axialMass > 0.0f) {
- m_axialMass = 1.0f / m_axialMass;
- }
- }
- // Prismatic constraint.
- {
- m_perp = b2Mul(qA, m_localYAxisA);
- m_s1 = b2Cross(d + rA, m_perp);
- m_s2 = b2Cross(rB, m_perp);
- float k11 = mA + mB + iA * m_s1 * m_s1 + iB * m_s2 * m_s2;
- float k12 = iA * m_s1 + iB * m_s2;
- float k22 = iA + iB;
- if (k22 == 0.0f) {
- // For bodies with fixed rotation.
- k22 = 1.0f;
- }
- m_K.ex.Set(k11, k12);
- m_K.ey.Set(k12, k22);
- }
- if (m_enableLimit) {
- m_translation = b2Dot(m_axis, d);
- } else {
- m_lowerImpulse = 0.0f;
- m_upperImpulse = 0.0f;
- }
- if (m_enableMotor == false) {
- m_motorImpulse = 0.0f;
- }
- if (data.step.warmStarting) {
- // Account for variable time step.
- m_impulse *= data.step.dtRatio;
- m_motorImpulse *= data.step.dtRatio;
- m_lowerImpulse *= data.step.dtRatio;
- m_upperImpulse *= data.step.dtRatio;
- float axialImpulse = m_motorImpulse + m_lowerImpulse - m_upperImpulse;
- b2Vec2 P = m_impulse.x * m_perp + axialImpulse * m_axis;
- float LA = m_impulse.x * m_s1 + m_impulse.y + axialImpulse * m_a1;
- float LB = m_impulse.x * m_s2 + m_impulse.y + axialImpulse * m_a2;
- vA -= mA * P;
- wA -= iA * LA;
- vB += mB * P;
- wB += iB * LB;
- } else {
- m_impulse.SetZero();
- m_motorImpulse = 0.0f;
- m_lowerImpulse = 0.0f;
- m_upperImpulse = 0.0f;
- }
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- void b2PrismaticJoint::SolveVelocityConstraints(const b2SolverData& data) {
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- float mA = m_invMassA, mB = m_invMassB;
- float iA = m_invIA, iB = m_invIB;
- // Solve linear motor constraint
- if (m_enableMotor) {
- float Cdot = b2Dot(m_axis, vB - vA) + m_a2 * wB - m_a1 * wA;
- float impulse = m_axialMass * (m_motorSpeed - Cdot);
- float oldImpulse = m_motorImpulse;
- float maxImpulse = data.step.dt * m_maxMotorForce;
- m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse);
- impulse = m_motorImpulse - oldImpulse;
- b2Vec2 P = impulse * m_axis;
- float LA = impulse * m_a1;
- float LB = impulse * m_a2;
- vA -= mA * P;
- wA -= iA * LA;
- vB += mB * P;
- wB += iB * LB;
- }
- if (m_enableLimit) {
- // Lower limit
- {
- float C = m_translation - m_lowerTranslation;
- float Cdot = b2Dot(m_axis, vB - vA) + m_a2 * wB - m_a1 * wA;
- float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt);
- float oldImpulse = m_lowerImpulse;
- m_lowerImpulse = b2Max(m_lowerImpulse + impulse, 0.0f);
- impulse = m_lowerImpulse - oldImpulse;
- b2Vec2 P = impulse * m_axis;
- float LA = impulse * m_a1;
- float LB = impulse * m_a2;
- vA -= mA * P;
- wA -= iA * LA;
- vB += mB * P;
- wB += iB * LB;
- }
- // Upper limit
- // Note: signs are flipped to keep C positive when the constraint is satisfied.
- // This also keeps the impulse positive when the limit is active.
- {
- float C = m_upperTranslation - m_translation;
- float Cdot = b2Dot(m_axis, vA - vB) + m_a1 * wA - m_a2 * wB;
- float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt);
- float oldImpulse = m_upperImpulse;
- m_upperImpulse = b2Max(m_upperImpulse + impulse, 0.0f);
- impulse = m_upperImpulse - oldImpulse;
- b2Vec2 P = impulse * m_axis;
- float LA = impulse * m_a1;
- float LB = impulse * m_a2;
- vA += mA * P;
- wA += iA * LA;
- vB -= mB * P;
- wB -= iB * LB;
- }
- }
- // Solve the prismatic constraint in block form.
- {
- b2Vec2 Cdot;
- Cdot.x = b2Dot(m_perp, vB - vA) + m_s2 * wB - m_s1 * wA;
- Cdot.y = wB - wA;
- b2Vec2 df = m_K.Solve(-Cdot);
- m_impulse += df;
- b2Vec2 P = df.x * m_perp;
- float LA = df.x * m_s1 + df.y;
- float LB = df.x * m_s2 + df.y;
- vA -= mA * P;
- wA -= iA * LA;
- vB += mB * P;
- wB += iB * LB;
- }
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- // A velocity based solver computes reaction forces(impulses) using the velocity constraint solver.Under this context,
- // the position solver is not there to resolve forces.It is only there to cope with integration error.
- //
- // Therefore, the pseudo impulses in the position solver do not have any physical meaning.Thus it is okay if they suck.
- //
- // We could take the active state from the velocity solver.However, the joint might push past the limit when the velocity
- // solver indicates the limit is inactive.
- bool b2PrismaticJoint::SolvePositionConstraints(const b2SolverData& data) {
- b2Vec2 cA = data.positions[m_indexA].c;
- float aA = data.positions[m_indexA].a;
- b2Vec2 cB = data.positions[m_indexB].c;
- float aB = data.positions[m_indexB].a;
- b2Rot qA(aA), qB(aB);
- float mA = m_invMassA, mB = m_invMassB;
- float iA = m_invIA, iB = m_invIB;
- // Compute fresh Jacobians
- b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
- b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
- b2Vec2 d = cB + rB - cA - rA;
- b2Vec2 axis = b2Mul(qA, m_localXAxisA);
- float a1 = b2Cross(d + rA, axis);
- float a2 = b2Cross(rB, axis);
- b2Vec2 perp = b2Mul(qA, m_localYAxisA);
- float s1 = b2Cross(d + rA, perp);
- float s2 = b2Cross(rB, perp);
- b2Vec3 impulse;
- b2Vec2 C1;
- C1.x = b2Dot(perp, d);
- C1.y = aB - aA - m_referenceAngle;
- float linearError = b2Abs(C1.x);
- float angularError = b2Abs(C1.y);
- bool active = false;
- float C2 = 0.0f;
- if (m_enableLimit) {
- float translation = b2Dot(axis, d);
- if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop) {
- C2 = translation;
- linearError = b2Max(linearError, b2Abs(translation));
- active = true;
- } else if (translation <= m_lowerTranslation) {
- C2 = b2Min(translation - m_lowerTranslation, 0.0f);
- linearError = b2Max(linearError, m_lowerTranslation - translation);
- active = true;
- } else if (translation >= m_upperTranslation) {
- C2 = b2Max(translation - m_upperTranslation, 0.0f);
- linearError = b2Max(linearError, translation - m_upperTranslation);
- active = true;
- }
- }
- if (active) {
- float k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2;
- float k12 = iA * s1 + iB * s2;
- float k13 = iA * s1 * a1 + iB * s2 * a2;
- float k22 = iA + iB;
- if (k22 == 0.0f) {
- // For fixed rotation
- k22 = 1.0f;
- }
- float k23 = iA * a1 + iB * a2;
- float k33 = mA + mB + iA * a1 * a1 + iB * a2 * a2;
- b2Mat33 K;
- K.ex.Set(k11, k12, k13);
- K.ey.Set(k12, k22, k23);
- K.ez.Set(k13, k23, k33);
- b2Vec3 C;
- C.x = C1.x;
- C.y = C1.y;
- C.z = C2;
- impulse = K.Solve33(-C);
- } else {
- float k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2;
- float k12 = iA * s1 + iB * s2;
- float k22 = iA + iB;
- if (k22 == 0.0f) {
- k22 = 1.0f;
- }
- b2Mat22 K;
- K.ex.Set(k11, k12);
- K.ey.Set(k12, k22);
- b2Vec2 impulse1 = K.Solve(-C1);
- impulse.x = impulse1.x;
- impulse.y = impulse1.y;
- impulse.z = 0.0f;
- }
- b2Vec2 P = impulse.x * perp + impulse.z * axis;
- float LA = impulse.x * s1 + impulse.y + impulse.z * a1;
- float LB = impulse.x * s2 + impulse.y + impulse.z * a2;
- cA -= mA * P;
- aA -= iA * LA;
- cB += mB * P;
- aB += iB * LB;
- data.positions[m_indexA].c = cA;
- data.positions[m_indexA].a = aA;
- data.positions[m_indexB].c = cB;
- data.positions[m_indexB].a = aB;
- return linearError <= b2_linearSlop && angularError <= b2_angularSlop;
- }
- b2Vec2 b2PrismaticJoint::GetAnchorA() const {
- return m_bodyA->GetWorldPoint(m_localAnchorA);
- }
- b2Vec2 b2PrismaticJoint::GetAnchorB() const {
- return m_bodyB->GetWorldPoint(m_localAnchorB);
- }
- b2Vec2 b2PrismaticJoint::GetReactionForce(float inv_dt) const {
- return inv_dt * (m_impulse.x * m_perp + (m_motorImpulse + m_lowerImpulse - m_upperImpulse) * m_axis);
- }
- float b2PrismaticJoint::GetReactionTorque(float inv_dt) const {
- return inv_dt * m_impulse.y;
- }
- float b2PrismaticJoint::GetJointTranslation() const {
- b2Vec2 pA = m_bodyA->GetWorldPoint(m_localAnchorA);
- b2Vec2 pB = m_bodyB->GetWorldPoint(m_localAnchorB);
- b2Vec2 d = pB - pA;
- b2Vec2 axis = m_bodyA->GetWorldVector(m_localXAxisA);
- float translation = b2Dot(d, axis);
- return translation;
- }
- float b2PrismaticJoint::GetJointSpeed() const {
- b2Body* bA = m_bodyA;
- b2Body* bB = m_bodyB;
- b2Vec2 rA = b2Mul(bA->m_xf.q, m_localAnchorA - bA->m_sweep.localCenter);
- b2Vec2 rB = b2Mul(bB->m_xf.q, m_localAnchorB - bB->m_sweep.localCenter);
- b2Vec2 p1 = bA->m_sweep.c + rA;
- b2Vec2 p2 = bB->m_sweep.c + rB;
- b2Vec2 d = p2 - p1;
- b2Vec2 axis = b2Mul(bA->m_xf.q, m_localXAxisA);
- b2Vec2 vA = bA->m_linearVelocity;
- b2Vec2 vB = bB->m_linearVelocity;
- float wA = bA->m_angularVelocity;
- float wB = bB->m_angularVelocity;
- float speed = b2Dot(d, b2Cross(wA, axis)) + b2Dot(axis, vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA));
- return speed;
- }
- bool b2PrismaticJoint::IsLimitEnabled() const {
- return m_enableLimit;
- }
- void b2PrismaticJoint::EnableLimit(bool flag) {
- if (flag != m_enableLimit) {
- m_bodyA->SetAwake(true);
- m_bodyB->SetAwake(true);
- m_enableLimit = flag;
- m_lowerImpulse = 0.0f;
- m_upperImpulse = 0.0f;
- }
- }
- float b2PrismaticJoint::GetLowerLimit() const {
- return m_lowerTranslation;
- }
- float b2PrismaticJoint::GetUpperLimit() const {
- return m_upperTranslation;
- }
- void b2PrismaticJoint::SetLimits(float lower, float upper) {
- b2Assert(lower <= upper);
- if (lower != m_lowerTranslation || upper != m_upperTranslation) {
- m_bodyA->SetAwake(true);
- m_bodyB->SetAwake(true);
- m_lowerTranslation = lower;
- m_upperTranslation = upper;
- m_lowerImpulse = 0.0f;
- m_upperImpulse = 0.0f;
- }
- }
- bool b2PrismaticJoint::IsMotorEnabled() const {
- return m_enableMotor;
- }
- void b2PrismaticJoint::EnableMotor(bool flag) {
- if (flag != m_enableMotor) {
- m_bodyA->SetAwake(true);
- m_bodyB->SetAwake(true);
- m_enableMotor = flag;
- }
- }
- void b2PrismaticJoint::SetMotorSpeed(float speed) {
- if (speed != m_motorSpeed) {
- m_bodyA->SetAwake(true);
- m_bodyB->SetAwake(true);
- m_motorSpeed = speed;
- }
- }
- void b2PrismaticJoint::SetMaxMotorForce(float force) {
- if (force != m_maxMotorForce) {
- m_bodyA->SetAwake(true);
- m_bodyB->SetAwake(true);
- m_maxMotorForce = force;
- }
- }
- float b2PrismaticJoint::GetMotorForce(float inv_dt) const {
- return inv_dt * m_motorImpulse;
- }
- void b2PrismaticJoint::Dump() {
- // FLT_DECIMAL_DIG == 9
- int32 indexA = m_bodyA->m_islandIndex;
- int32 indexB = m_bodyB->m_islandIndex;
- b2Dump(" b2PrismaticJointDef jd;\n");
- b2Dump(" jd.bodyA = bodies[%d];\n", indexA);
- b2Dump(" jd.bodyB = bodies[%d];\n", indexB);
- b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected);
- b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y);
- b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y);
- b2Dump(" jd.localAxisA.Set(%.9g, %.9g);\n", m_localXAxisA.x, m_localXAxisA.y);
- b2Dump(" jd.referenceAngle = %.9g;\n", m_referenceAngle);
- b2Dump(" jd.enableLimit = bool(%d);\n", m_enableLimit);
- b2Dump(" jd.lowerTranslation = %.9g;\n", m_lowerTranslation);
- b2Dump(" jd.upperTranslation = %.9g;\n", m_upperTranslation);
- b2Dump(" jd.enableMotor = bool(%d);\n", m_enableMotor);
- b2Dump(" jd.motorSpeed = %.9g;\n", m_motorSpeed);
- b2Dump(" jd.maxMotorForce = %.9g;\n", m_maxMotorForce);
- b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
- }
- void b2PrismaticJoint::Draw(b2Draw* draw) const {
- const b2Transform& xfA = m_bodyA->GetTransform();
- const b2Transform& xfB = m_bodyB->GetTransform();
- b2Vec2 pA = b2Mul(xfA, m_localAnchorA);
- b2Vec2 pB = b2Mul(xfB, m_localAnchorB);
- b2Vec2 axis = b2Mul(xfA.q, m_localXAxisA);
- b2Color c1(0.7f, 0.7f, 0.7f);
- b2Color c2(0.3f, 0.9f, 0.3f);
- b2Color c3(0.9f, 0.3f, 0.3f);
- b2Color c4(0.3f, 0.3f, 0.9f);
- b2Color c5(0.4f, 0.4f, 0.4f);
- draw->DrawSegment(pA, pB, c5);
- if (m_enableLimit) {
- b2Vec2 lower = pA + m_lowerTranslation * axis;
- b2Vec2 upper = pA + m_upperTranslation * axis;
- b2Vec2 perp = b2Mul(xfA.q, m_localYAxisA);
- draw->DrawSegment(lower, upper, c1);
- draw->DrawSegment(lower - 0.5f * perp, lower + 0.5f * perp, c2);
- draw->DrawSegment(upper - 0.5f * perp, upper + 0.5f * perp, c3);
- } else {
- draw->DrawSegment(pA - 1.0f * axis, pA + 1.0f * axis, c1);
- }
- draw->DrawPoint(pA, 5.0f, c1);
- draw->DrawPoint(pB, 5.0f, c4);
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_pulley_joint.h"
- //#include "box2d/b2_time_step.h"
- // Pulley:
- // length1 = norm(p1 - s1)
- // length2 = norm(p2 - s2)
- // C0 = (length1 + ratio * length2)_initial
- // C = C0 - (length1 + ratio * length2)
- // u1 = (p1 - s1) / norm(p1 - s1)
- // u2 = (p2 - s2) / norm(p2 - s2)
- // Cdot = -dot(u1, v1 + cross(w1, r1)) - ratio * dot(u2, v2 + cross(w2, r2))
- // J = -[u1 cross(r1, u1) ratio * u2 ratio * cross(r2, u2)]
- // K = J * invM * JT
- // = invMass1 + invI1 * cross(r1, u1)^2 + ratio^2 * (invMass2 + invI2 * cross(r2, u2)^2)
- void b2PulleyJointDef::Initialize(b2Body* bA, b2Body* bB,
- const b2Vec2& groundA, const b2Vec2& groundB,
- const b2Vec2& anchorA, const b2Vec2& anchorB,
- float r) {
- bodyA = bA;
- bodyB = bB;
- groundAnchorA = groundA;
- groundAnchorB = groundB;
- localAnchorA = bodyA->GetLocalPoint(anchorA);
- localAnchorB = bodyB->GetLocalPoint(anchorB);
- b2Vec2 dA = anchorA - groundA;
- lengthA = dA.Length();
- b2Vec2 dB = anchorB - groundB;
- lengthB = dB.Length();
- ratio = r;
- b2Assert(ratio > b2_epsilon);
- }
- b2PulleyJoint::b2PulleyJoint(const b2PulleyJointDef* def)
- : b2Joint(def) {
- m_groundAnchorA = def->groundAnchorA;
- m_groundAnchorB = def->groundAnchorB;
- m_localAnchorA = def->localAnchorA;
- m_localAnchorB = def->localAnchorB;
- m_lengthA = def->lengthA;
- m_lengthB = def->lengthB;
- b2Assert(def->ratio != 0.0f);
- m_ratio = def->ratio;
- m_constant = def->lengthA + m_ratio * def->lengthB;
- m_impulse = 0.0f;
- }
- void b2PulleyJoint::InitVelocityConstraints(const b2SolverData& data) {
- m_indexA = m_bodyA->m_islandIndex;
- m_indexB = m_bodyB->m_islandIndex;
- m_localCenterA = m_bodyA->m_sweep.localCenter;
- m_localCenterB = m_bodyB->m_sweep.localCenter;
- m_invMassA = m_bodyA->m_invMass;
- m_invMassB = m_bodyB->m_invMass;
- m_invIA = m_bodyA->m_invI;
- m_invIB = m_bodyB->m_invI;
- b2Vec2 cA = data.positions[m_indexA].c;
- float aA = data.positions[m_indexA].a;
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- b2Vec2 cB = data.positions[m_indexB].c;
- float aB = data.positions[m_indexB].a;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- b2Rot qA(aA), qB(aB);
- m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
- m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
- // Get the pulley axes.
- m_uA = cA + m_rA - m_groundAnchorA;
- m_uB = cB + m_rB - m_groundAnchorB;
- float lengthA = m_uA.Length();
- float lengthB = m_uB.Length();
- if (lengthA > 10.0f * b2_linearSlop) {
- m_uA *= 1.0f / lengthA;
- } else {
- m_uA.SetZero();
- }
- if (lengthB > 10.0f * b2_linearSlop) {
- m_uB *= 1.0f / lengthB;
- } else {
- m_uB.SetZero();
- }
- // Compute effective mass.
- float ruA = b2Cross(m_rA, m_uA);
- float ruB = b2Cross(m_rB, m_uB);
- float mA = m_invMassA + m_invIA * ruA * ruA;
- float mB = m_invMassB + m_invIB * ruB * ruB;
- m_mass = mA + m_ratio * m_ratio * mB;
- if (m_mass > 0.0f) {
- m_mass = 1.0f / m_mass;
- }
- if (data.step.warmStarting) {
- // Scale impulses to support variable time steps.
- m_impulse *= data.step.dtRatio;
- // Warm starting.
- b2Vec2 PA = -(m_impulse)*m_uA;
- b2Vec2 PB = (-m_ratio * m_impulse) * m_uB;
- vA += m_invMassA * PA;
- wA += m_invIA * b2Cross(m_rA, PA);
- vB += m_invMassB * PB;
- wB += m_invIB * b2Cross(m_rB, PB);
- } else {
- m_impulse = 0.0f;
- }
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- void b2PulleyJoint::SolveVelocityConstraints(const b2SolverData& data) {
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- b2Vec2 vpA = vA + b2Cross(wA, m_rA);
- b2Vec2 vpB = vB + b2Cross(wB, m_rB);
- float Cdot = -b2Dot(m_uA, vpA) - m_ratio * b2Dot(m_uB, vpB);
- float impulse = -m_mass * Cdot;
- m_impulse += impulse;
- b2Vec2 PA = -impulse * m_uA;
- b2Vec2 PB = -m_ratio * impulse * m_uB;
- vA += m_invMassA * PA;
- wA += m_invIA * b2Cross(m_rA, PA);
- vB += m_invMassB * PB;
- wB += m_invIB * b2Cross(m_rB, PB);
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- bool b2PulleyJoint::SolvePositionConstraints(const b2SolverData& data) {
- b2Vec2 cA = data.positions[m_indexA].c;
- float aA = data.positions[m_indexA].a;
- b2Vec2 cB = data.positions[m_indexB].c;
- float aB = data.positions[m_indexB].a;
- b2Rot qA(aA), qB(aB);
- b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
- b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
- // Get the pulley axes.
- b2Vec2 uA = cA + rA - m_groundAnchorA;
- b2Vec2 uB = cB + rB - m_groundAnchorB;
- float lengthA = uA.Length();
- float lengthB = uB.Length();
- if (lengthA > 10.0f * b2_linearSlop) {
- uA *= 1.0f / lengthA;
- } else {
- uA.SetZero();
- }
- if (lengthB > 10.0f * b2_linearSlop) {
- uB *= 1.0f / lengthB;
- } else {
- uB.SetZero();
- }
- // Compute effective mass.
- float ruA = b2Cross(rA, uA);
- float ruB = b2Cross(rB, uB);
- float mA = m_invMassA + m_invIA * ruA * ruA;
- float mB = m_invMassB + m_invIB * ruB * ruB;
- float mass = mA + m_ratio * m_ratio * mB;
- if (mass > 0.0f) {
- mass = 1.0f / mass;
- }
- float C = m_constant - lengthA - m_ratio * lengthB;
- float linearError = b2Abs(C);
- float impulse = -mass * C;
- b2Vec2 PA = -impulse * uA;
- b2Vec2 PB = -m_ratio * impulse * uB;
- cA += m_invMassA * PA;
- aA += m_invIA * b2Cross(rA, PA);
- cB += m_invMassB * PB;
- aB += m_invIB * b2Cross(rB, PB);
- data.positions[m_indexA].c = cA;
- data.positions[m_indexA].a = aA;
- data.positions[m_indexB].c = cB;
- data.positions[m_indexB].a = aB;
- return linearError < b2_linearSlop;
- }
- b2Vec2 b2PulleyJoint::GetAnchorA() const {
- return m_bodyA->GetWorldPoint(m_localAnchorA);
- }
- b2Vec2 b2PulleyJoint::GetAnchorB() const {
- return m_bodyB->GetWorldPoint(m_localAnchorB);
- }
- b2Vec2 b2PulleyJoint::GetReactionForce(float inv_dt) const {
- b2Vec2 P = m_impulse * m_uB;
- return inv_dt * P;
- }
- float b2PulleyJoint::GetReactionTorque(float inv_dt) const {
- B2_NOT_USED(inv_dt);
- return 0.0f;
- }
- b2Vec2 b2PulleyJoint::GetGroundAnchorA() const {
- return m_groundAnchorA;
- }
- b2Vec2 b2PulleyJoint::GetGroundAnchorB() const {
- return m_groundAnchorB;
- }
- float b2PulleyJoint::GetLengthA() const {
- return m_lengthA;
- }
- float b2PulleyJoint::GetLengthB() const {
- return m_lengthB;
- }
- float b2PulleyJoint::GetRatio() const {
- return m_ratio;
- }
- float b2PulleyJoint::GetCurrentLengthA() const {
- b2Vec2 p = m_bodyA->GetWorldPoint(m_localAnchorA);
- b2Vec2 s = m_groundAnchorA;
- b2Vec2 d = p - s;
- return d.Length();
- }
- float b2PulleyJoint::GetCurrentLengthB() const {
- b2Vec2 p = m_bodyB->GetWorldPoint(m_localAnchorB);
- b2Vec2 s = m_groundAnchorB;
- b2Vec2 d = p - s;
- return d.Length();
- }
- void b2PulleyJoint::Dump() {
- int32 indexA = m_bodyA->m_islandIndex;
- int32 indexB = m_bodyB->m_islandIndex;
- b2Dump(" b2PulleyJointDef jd;\n");
- b2Dump(" jd.bodyA = bodies[%d];\n", indexA);
- b2Dump(" jd.bodyB = bodies[%d];\n", indexB);
- b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected);
- b2Dump(" jd.groundAnchorA.Set(%.9g, %.9g);\n", m_groundAnchorA.x, m_groundAnchorA.y);
- b2Dump(" jd.groundAnchorB.Set(%.9g, %.9g);\n", m_groundAnchorB.x, m_groundAnchorB.y);
- b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y);
- b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y);
- b2Dump(" jd.lengthA = %.9g;\n", m_lengthA);
- b2Dump(" jd.lengthB = %.9g;\n", m_lengthB);
- b2Dump(" jd.ratio = %.9g;\n", m_ratio);
- b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
- }
- void b2PulleyJoint::ShiftOrigin(const b2Vec2& newOrigin) {
- m_groundAnchorA -= newOrigin;
- m_groundAnchorB -= newOrigin;
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_draw.h"
- //#include "box2d/b2_revolute_joint.h"
- //#include "box2d/b2_time_step.h"
- // Point-to-point constraint
- // C = p2 - p1
- // Cdot = v2 - v1
- // = v2 + cross(w2, r2) - v1 - cross(w1, r1)
- // J = [-I -r1_skew I r2_skew ]
- // Identity used:
- // w k % (rx i + ry j) = w * (-ry i + rx j)
- // Motor constraint
- // Cdot = w2 - w1
- // J = [0 0 -1 0 0 1]
- // K = invI1 + invI2
- void b2RevoluteJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) {
- bodyA = bA;
- bodyB = bB;
- localAnchorA = bodyA->GetLocalPoint(anchor);
- localAnchorB = bodyB->GetLocalPoint(anchor);
- referenceAngle = bodyB->GetAngle() - bodyA->GetAngle();
- }
- b2RevoluteJoint::b2RevoluteJoint(const b2RevoluteJointDef* def)
- : b2Joint(def) {
- m_localAnchorA = def->localAnchorA;
- m_localAnchorB = def->localAnchorB;
- m_referenceAngle = def->referenceAngle;
- m_impulse.SetZero();
- m_axialMass = 0.0f;
- m_motorImpulse = 0.0f;
- m_lowerImpulse = 0.0f;
- m_upperImpulse = 0.0f;
- m_lowerAngle = def->lowerAngle;
- m_upperAngle = def->upperAngle;
- m_maxMotorTorque = def->maxMotorTorque;
- m_motorSpeed = def->motorSpeed;
- m_enableLimit = def->enableLimit;
- m_enableMotor = def->enableMotor;
- m_angle = 0.0f;
- }
- void b2RevoluteJoint::InitVelocityConstraints(const b2SolverData& data) {
- m_indexA = m_bodyA->m_islandIndex;
- m_indexB = m_bodyB->m_islandIndex;
- m_localCenterA = m_bodyA->m_sweep.localCenter;
- m_localCenterB = m_bodyB->m_sweep.localCenter;
- m_invMassA = m_bodyA->m_invMass;
- m_invMassB = m_bodyB->m_invMass;
- m_invIA = m_bodyA->m_invI;
- m_invIB = m_bodyB->m_invI;
- float aA = data.positions[m_indexA].a;
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- float aB = data.positions[m_indexB].a;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- b2Rot qA(aA), qB(aB);
- m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
- m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
- // J = [-I -r1_skew I r2_skew]
- // r_skew = [-ry; rx]
- // Matlab
- // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x]
- // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB]
- float mA = m_invMassA, mB = m_invMassB;
- float iA = m_invIA, iB = m_invIB;
- m_K.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB;
- m_K.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB;
- m_K.ex.y = m_K.ey.x;
- m_K.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB;
- m_axialMass = iA + iB;
- bool fixedRotation;
- if (m_axialMass > 0.0f) {
- m_axialMass = 1.0f / m_axialMass;
- fixedRotation = false;
- } else {
- fixedRotation = true;
- }
- m_angle = aB - aA - m_referenceAngle;
- if (m_enableLimit == false || fixedRotation) {
- m_lowerImpulse = 0.0f;
- m_upperImpulse = 0.0f;
- }
- if (m_enableMotor == false || fixedRotation) {
- m_motorImpulse = 0.0f;
- }
- if (data.step.warmStarting) {
- // Scale impulses to support a variable time step.
- m_impulse *= data.step.dtRatio;
- m_motorImpulse *= data.step.dtRatio;
- m_lowerImpulse *= data.step.dtRatio;
- m_upperImpulse *= data.step.dtRatio;
- float axialImpulse = m_motorImpulse + m_lowerImpulse - m_upperImpulse;
- b2Vec2 P(m_impulse.x, m_impulse.y);
- vA -= mA * P;
- wA -= iA * (b2Cross(m_rA, P) + axialImpulse);
- vB += mB * P;
- wB += iB * (b2Cross(m_rB, P) + axialImpulse);
- } else {
- m_impulse.SetZero();
- m_motorImpulse = 0.0f;
- m_lowerImpulse = 0.0f;
- m_upperImpulse = 0.0f;
- }
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- void b2RevoluteJoint::SolveVelocityConstraints(const b2SolverData& data) {
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- float mA = m_invMassA, mB = m_invMassB;
- float iA = m_invIA, iB = m_invIB;
- bool fixedRotation = (iA + iB == 0.0f);
- // Solve motor constraint.
- if (m_enableMotor && fixedRotation == false) {
- float Cdot = wB - wA - m_motorSpeed;
- float impulse = -m_axialMass * Cdot;
- float oldImpulse = m_motorImpulse;
- float maxImpulse = data.step.dt * m_maxMotorTorque;
- m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse);
- impulse = m_motorImpulse - oldImpulse;
- wA -= iA * impulse;
- wB += iB * impulse;
- }
- if (m_enableLimit && fixedRotation == false) {
- // Lower limit
- {
- float C = m_angle - m_lowerAngle;
- float Cdot = wB - wA;
- float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt);
- float oldImpulse = m_lowerImpulse;
- m_lowerImpulse = b2Max(m_lowerImpulse + impulse, 0.0f);
- impulse = m_lowerImpulse - oldImpulse;
- wA -= iA * impulse;
- wB += iB * impulse;
- }
- // Upper limit
- // Note: signs are flipped to keep C positive when the constraint is satisfied.
- // This also keeps the impulse positive when the limit is active.
- {
- float C = m_upperAngle - m_angle;
- float Cdot = wA - wB;
- float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt);
- float oldImpulse = m_upperImpulse;
- m_upperImpulse = b2Max(m_upperImpulse + impulse, 0.0f);
- impulse = m_upperImpulse - oldImpulse;
- wA += iA * impulse;
- wB -= iB * impulse;
- }
- }
- // Solve point-to-point constraint
- {
- b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA);
- b2Vec2 impulse = m_K.Solve(-Cdot);
- m_impulse.x += impulse.x;
- m_impulse.y += impulse.y;
- vA -= mA * impulse;
- wA -= iA * b2Cross(m_rA, impulse);
- vB += mB * impulse;
- wB += iB * b2Cross(m_rB, impulse);
- }
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- bool b2RevoluteJoint::SolvePositionConstraints(const b2SolverData& data) {
- b2Vec2 cA = data.positions[m_indexA].c;
- float aA = data.positions[m_indexA].a;
- b2Vec2 cB = data.positions[m_indexB].c;
- float aB = data.positions[m_indexB].a;
- b2Rot qA(aA), qB(aB);
- float angularError = 0.0f;
- float positionError = 0.0f;
- bool fixedRotation = (m_invIA + m_invIB == 0.0f);
- // Solve angular limit constraint
- if (m_enableLimit && fixedRotation == false) {
- float angle = aB - aA - m_referenceAngle;
- float C = 0.0f;
- if (b2Abs(m_upperAngle - m_lowerAngle) < 2.0f * b2_angularSlop) {
- // Prevent large angular corrections
- C = b2Clamp(angle - m_lowerAngle, -b2_maxAngularCorrection, b2_maxAngularCorrection);
- } else if (angle <= m_lowerAngle) {
- // Prevent large angular corrections and allow some slop.
- C = b2Clamp(angle - m_lowerAngle + b2_angularSlop, -b2_maxAngularCorrection, 0.0f);
- } else if (angle >= m_upperAngle) {
- // Prevent large angular corrections and allow some slop.
- C = b2Clamp(angle - m_upperAngle - b2_angularSlop, 0.0f, b2_maxAngularCorrection);
- }
- float limitImpulse = -m_axialMass * C;
- aA -= m_invIA * limitImpulse;
- aB += m_invIB * limitImpulse;
- angularError = b2Abs(C);
- }
- // Solve point-to-point constraint.
- {
- qA.Set(aA);
- qB.Set(aB);
- b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
- b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
- b2Vec2 C = cB + rB - cA - rA;
- positionError = C.Length();
- float mA = m_invMassA, mB = m_invMassB;
- float iA = m_invIA, iB = m_invIB;
- b2Mat22 K;
- K.ex.x = mA + mB + iA * rA.y * rA.y + iB * rB.y * rB.y;
- K.ex.y = -iA * rA.x * rA.y - iB * rB.x * rB.y;
- K.ey.x = K.ex.y;
- K.ey.y = mA + mB + iA * rA.x * rA.x + iB * rB.x * rB.x;
- b2Vec2 impulse = -K.Solve(C);
- cA -= mA * impulse;
- aA -= iA * b2Cross(rA, impulse);
- cB += mB * impulse;
- aB += iB * b2Cross(rB, impulse);
- }
- data.positions[m_indexA].c = cA;
- data.positions[m_indexA].a = aA;
- data.positions[m_indexB].c = cB;
- data.positions[m_indexB].a = aB;
- return positionError <= b2_linearSlop && angularError <= b2_angularSlop;
- }
- b2Vec2 b2RevoluteJoint::GetAnchorA() const {
- return m_bodyA->GetWorldPoint(m_localAnchorA);
- }
- b2Vec2 b2RevoluteJoint::GetAnchorB() const {
- return m_bodyB->GetWorldPoint(m_localAnchorB);
- }
- b2Vec2 b2RevoluteJoint::GetReactionForce(float inv_dt) const {
- b2Vec2 P(m_impulse.x, m_impulse.y);
- return inv_dt * P;
- }
- float b2RevoluteJoint::GetReactionTorque(float inv_dt) const {
- return inv_dt * (m_motorImpulse + m_lowerImpulse - m_upperImpulse);
- }
- float b2RevoluteJoint::GetJointAngle() const {
- b2Body* bA = m_bodyA;
- b2Body* bB = m_bodyB;
- return bB->m_sweep.a - bA->m_sweep.a - m_referenceAngle;
- }
- float b2RevoluteJoint::GetJointSpeed() const {
- b2Body* bA = m_bodyA;
- b2Body* bB = m_bodyB;
- return bB->m_angularVelocity - bA->m_angularVelocity;
- }
- bool b2RevoluteJoint::IsMotorEnabled() const {
- return m_enableMotor;
- }
- void b2RevoluteJoint::EnableMotor(bool flag) {
- if (flag != m_enableMotor) {
- m_bodyA->SetAwake(true);
- m_bodyB->SetAwake(true);
- m_enableMotor = flag;
- }
- }
- float b2RevoluteJoint::GetMotorTorque(float inv_dt) const {
- return inv_dt * m_motorImpulse;
- }
- void b2RevoluteJoint::SetMotorSpeed(float speed) {
- if (speed != m_motorSpeed) {
- m_bodyA->SetAwake(true);
- m_bodyB->SetAwake(true);
- m_motorSpeed = speed;
- }
- }
- void b2RevoluteJoint::SetMaxMotorTorque(float torque) {
- if (torque != m_maxMotorTorque) {
- m_bodyA->SetAwake(true);
- m_bodyB->SetAwake(true);
- m_maxMotorTorque = torque;
- }
- }
- bool b2RevoluteJoint::IsLimitEnabled() const {
- return m_enableLimit;
- }
- void b2RevoluteJoint::EnableLimit(bool flag) {
- if (flag != m_enableLimit) {
- m_bodyA->SetAwake(true);
- m_bodyB->SetAwake(true);
- m_enableLimit = flag;
- m_lowerImpulse = 0.0f;
- m_upperImpulse = 0.0f;
- }
- }
- float b2RevoluteJoint::GetLowerLimit() const {
- return m_lowerAngle;
- }
- float b2RevoluteJoint::GetUpperLimit() const {
- return m_upperAngle;
- }
- void b2RevoluteJoint::SetLimits(float lower, float upper) {
- b2Assert(lower <= upper);
- if (lower != m_lowerAngle || upper != m_upperAngle) {
- m_bodyA->SetAwake(true);
- m_bodyB->SetAwake(true);
- m_lowerImpulse = 0.0f;
- m_upperImpulse = 0.0f;
- m_lowerAngle = lower;
- m_upperAngle = upper;
- }
- }
- void b2RevoluteJoint::Dump() {
- int32 indexA = m_bodyA->m_islandIndex;
- int32 indexB = m_bodyB->m_islandIndex;
- b2Dump(" b2RevoluteJointDef jd;\n");
- b2Dump(" jd.bodyA = bodies[%d];\n", indexA);
- b2Dump(" jd.bodyB = bodies[%d];\n", indexB);
- b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected);
- b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y);
- b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y);
- b2Dump(" jd.referenceAngle = %.9g;\n", m_referenceAngle);
- b2Dump(" jd.enableLimit = bool(%d);\n", m_enableLimit);
- b2Dump(" jd.lowerAngle = %.9g;\n", m_lowerAngle);
- b2Dump(" jd.upperAngle = %.9g;\n", m_upperAngle);
- b2Dump(" jd.enableMotor = bool(%d);\n", m_enableMotor);
- b2Dump(" jd.motorSpeed = %.9g;\n", m_motorSpeed);
- b2Dump(" jd.maxMotorTorque = %.9g;\n", m_maxMotorTorque);
- b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
- }
- ///
- void b2RevoluteJoint::Draw(b2Draw* draw) const {
- const b2Transform& xfA = m_bodyA->GetTransform();
- const b2Transform& xfB = m_bodyB->GetTransform();
- b2Vec2 pA = b2Mul(xfA, m_localAnchorA);
- b2Vec2 pB = b2Mul(xfB, m_localAnchorB);
- b2Color c1(0.7f, 0.7f, 0.7f);
- b2Color c2(0.3f, 0.9f, 0.3f);
- b2Color c3(0.9f, 0.3f, 0.3f);
- b2Color c4(0.3f, 0.3f, 0.9f);
- b2Color c5(0.4f, 0.4f, 0.4f);
- draw->DrawPoint(pA, 5.0f, c4);
- draw->DrawPoint(pB, 5.0f, c5);
- float aA = m_bodyA->GetAngle();
- float aB = m_bodyB->GetAngle();
- float angle = aB - aA - m_referenceAngle;
- const float L = 0.5f;
- b2Vec2 r = L * b2Vec2(cosf(angle), sinf(angle));
- draw->DrawSegment(pB, pB + r, c1);
- draw->DrawCircle(pB, L, c1);
- if (m_enableLimit) {
- b2Vec2 rlo = L * b2Vec2(cosf(m_lowerAngle), sinf(m_lowerAngle));
- b2Vec2 rhi = L * b2Vec2(cosf(m_upperAngle), sinf(m_upperAngle));
- draw->DrawSegment(pB, pB + rlo, c2);
- draw->DrawSegment(pB, pB + rhi, c3);
- }
- b2Color color(0.5f, 0.8f, 0.8f);
- draw->DrawSegment(xfA.p, pA, color);
- draw->DrawSegment(pA, pB, color);
- draw->DrawSegment(xfB.p, pB, color);
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_time_step.h"
- //#include "box2d/b2_weld_joint.h"
- // Point-to-point constraint
- // C = p2 - p1
- // Cdot = v2 - v1
- // = v2 + cross(w2, r2) - v1 - cross(w1, r1)
- // J = [-I -r1_skew I r2_skew ]
- // Identity used:
- // w k % (rx i + ry j) = w * (-ry i + rx j)
- // Angle constraint
- // C = angle2 - angle1 - referenceAngle
- // Cdot = w2 - w1
- // J = [0 0 -1 0 0 1]
- // K = invI1 + invI2
- void b2WeldJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) {
- bodyA = bA;
- bodyB = bB;
- localAnchorA = bodyA->GetLocalPoint(anchor);
- localAnchorB = bodyB->GetLocalPoint(anchor);
- referenceAngle = bodyB->GetAngle() - bodyA->GetAngle();
- }
- b2WeldJoint::b2WeldJoint(const b2WeldJointDef* def)
- : b2Joint(def) {
- m_localAnchorA = def->localAnchorA;
- m_localAnchorB = def->localAnchorB;
- m_referenceAngle = def->referenceAngle;
- m_stiffness = def->stiffness;
- m_damping = def->damping;
- m_impulse.SetZero();
- }
- void b2WeldJoint::InitVelocityConstraints(const b2SolverData& data) {
- m_indexA = m_bodyA->m_islandIndex;
- m_indexB = m_bodyB->m_islandIndex;
- m_localCenterA = m_bodyA->m_sweep.localCenter;
- m_localCenterB = m_bodyB->m_sweep.localCenter;
- m_invMassA = m_bodyA->m_invMass;
- m_invMassB = m_bodyB->m_invMass;
- m_invIA = m_bodyA->m_invI;
- m_invIB = m_bodyB->m_invI;
- float aA = data.positions[m_indexA].a;
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- float aB = data.positions[m_indexB].a;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- b2Rot qA(aA), qB(aB);
- m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
- m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
- // J = [-I -r1_skew I r2_skew]
- // [ 0 -1 0 1]
- // r_skew = [-ry; rx]
- // Matlab
- // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
- // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
- // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
- float mA = m_invMassA, mB = m_invMassB;
- float iA = m_invIA, iB = m_invIB;
- b2Mat33 K;
- K.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB;
- K.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB;
- K.ez.x = -m_rA.y * iA - m_rB.y * iB;
- K.ex.y = K.ey.x;
- K.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB;
- K.ez.y = m_rA.x * iA + m_rB.x * iB;
- K.ex.z = K.ez.x;
- K.ey.z = K.ez.y;
- K.ez.z = iA + iB;
- if (m_stiffness > 0.0f) {
- K.GetInverse22(&m_mass);
- float invM = iA + iB;
- float C = aB - aA - m_referenceAngle;
- // Damping coefficient
- float d = m_damping;
- // Spring stiffness
- float k = m_stiffness;
- // magic formulas
- float h = data.step.dt;
- m_gamma = h * (d + h * k);
- m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f;
- m_bias = C * h * k * m_gamma;
- invM += m_gamma;
- m_mass.ez.z = invM != 0.0f ? 1.0f / invM : 0.0f;
- } else if (K.ez.z == 0.0f) {
- K.GetInverse22(&m_mass);
- m_gamma = 0.0f;
- m_bias = 0.0f;
- } else {
- K.GetSymInverse33(&m_mass);
- m_gamma = 0.0f;
- m_bias = 0.0f;
- }
- if (data.step.warmStarting) {
- // Scale impulses to support a variable time step.
- m_impulse *= data.step.dtRatio;
- b2Vec2 P(m_impulse.x, m_impulse.y);
- vA -= mA * P;
- wA -= iA * (b2Cross(m_rA, P) + m_impulse.z);
- vB += mB * P;
- wB += iB * (b2Cross(m_rB, P) + m_impulse.z);
- } else {
- m_impulse.SetZero();
- }
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- void b2WeldJoint::SolveVelocityConstraints(const b2SolverData& data) {
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- float mA = m_invMassA, mB = m_invMassB;
- float iA = m_invIA, iB = m_invIB;
- if (m_stiffness > 0.0f) {
- float Cdot2 = wB - wA;
- float impulse2 = -m_mass.ez.z * (Cdot2 + m_bias + m_gamma * m_impulse.z);
- m_impulse.z += impulse2;
- wA -= iA * impulse2;
- wB += iB * impulse2;
- b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA);
- b2Vec2 impulse1 = -b2Mul22(m_mass, Cdot1);
- m_impulse.x += impulse1.x;
- m_impulse.y += impulse1.y;
- b2Vec2 P = impulse1;
- vA -= mA * P;
- wA -= iA * b2Cross(m_rA, P);
- vB += mB * P;
- wB += iB * b2Cross(m_rB, P);
- } else {
- b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA);
- float Cdot2 = wB - wA;
- b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2);
- b2Vec3 impulse = -b2Mul(m_mass, Cdot);
- m_impulse += impulse;
- b2Vec2 P(impulse.x, impulse.y);
- vA -= mA * P;
- wA -= iA * (b2Cross(m_rA, P) + impulse.z);
- vB += mB * P;
- wB += iB * (b2Cross(m_rB, P) + impulse.z);
- }
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- bool b2WeldJoint::SolvePositionConstraints(const b2SolverData& data) {
- b2Vec2 cA = data.positions[m_indexA].c;
- float aA = data.positions[m_indexA].a;
- b2Vec2 cB = data.positions[m_indexB].c;
- float aB = data.positions[m_indexB].a;
- b2Rot qA(aA), qB(aB);
- float mA = m_invMassA, mB = m_invMassB;
- float iA = m_invIA, iB = m_invIB;
- b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
- b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
- float positionError, angularError;
- b2Mat33 K;
- K.ex.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB;
- K.ey.x = -rA.y * rA.x * iA - rB.y * rB.x * iB;
- K.ez.x = -rA.y * iA - rB.y * iB;
- K.ex.y = K.ey.x;
- K.ey.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB;
- K.ez.y = rA.x * iA + rB.x * iB;
- K.ex.z = K.ez.x;
- K.ey.z = K.ez.y;
- K.ez.z = iA + iB;
- if (m_stiffness > 0.0f) {
- b2Vec2 C1 = cB + rB - cA - rA;
- positionError = C1.Length();
- angularError = 0.0f;
- b2Vec2 P = -K.Solve22(C1);
- cA -= mA * P;
- aA -= iA * b2Cross(rA, P);
- cB += mB * P;
- aB += iB * b2Cross(rB, P);
- } else {
- b2Vec2 C1 = cB + rB - cA - rA;
- float C2 = aB - aA - m_referenceAngle;
- positionError = C1.Length();
- angularError = b2Abs(C2);
- b2Vec3 C(C1.x, C1.y, C2);
- b2Vec3 impulse;
- if (K.ez.z > 0.0f) {
- impulse = -K.Solve33(C);
- } else {
- b2Vec2 impulse2 = -K.Solve22(C1);
- impulse.Set(impulse2.x, impulse2.y, 0.0f);
- }
- b2Vec2 P(impulse.x, impulse.y);
- cA -= mA * P;
- aA -= iA * (b2Cross(rA, P) + impulse.z);
- cB += mB * P;
- aB += iB * (b2Cross(rB, P) + impulse.z);
- }
- data.positions[m_indexA].c = cA;
- data.positions[m_indexA].a = aA;
- data.positions[m_indexB].c = cB;
- data.positions[m_indexB].a = aB;
- return positionError <= b2_linearSlop && angularError <= b2_angularSlop;
- }
- b2Vec2 b2WeldJoint::GetAnchorA() const {
- return m_bodyA->GetWorldPoint(m_localAnchorA);
- }
- b2Vec2 b2WeldJoint::GetAnchorB() const {
- return m_bodyB->GetWorldPoint(m_localAnchorB);
- }
- b2Vec2 b2WeldJoint::GetReactionForce(float inv_dt) const {
- b2Vec2 P(m_impulse.x, m_impulse.y);
- return inv_dt * P;
- }
- float b2WeldJoint::GetReactionTorque(float inv_dt) const {
- return inv_dt * m_impulse.z;
- }
- void b2WeldJoint::Dump() {
- int32 indexA = m_bodyA->m_islandIndex;
- int32 indexB = m_bodyB->m_islandIndex;
- b2Dump(" b2WeldJointDef jd;\n");
- b2Dump(" jd.bodyA = bodies[%d];\n", indexA);
- b2Dump(" jd.bodyB = bodies[%d];\n", indexB);
- b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected);
- b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y);
- b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y);
- b2Dump(" jd.referenceAngle = %.9g;\n", m_referenceAngle);
- b2Dump(" jd.stiffness = %.9g;\n", m_stiffness);
- b2Dump(" jd.damping = %.9g;\n", m_damping);
- b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_draw.h"
- //#include "box2d/b2_wheel_joint.h"
- //#include "box2d/b2_time_step.h"
- // Linear constraint (point-to-line)
- // d = pB - pA = xB + rB - xA - rA
- // C = dot(ay, d)
- // Cdot = dot(d, cross(wA, ay)) + dot(ay, vB + cross(wB, rB) - vA - cross(wA, rA))
- // = -dot(ay, vA) - dot(cross(d + rA, ay), wA) + dot(ay, vB) + dot(cross(rB, ay), vB)
- // J = [-ay, -cross(d + rA, ay), ay, cross(rB, ay)]
- // Spring linear constraint
- // C = dot(ax, d)
- // Cdot = = -dot(ax, vA) - dot(cross(d + rA, ax), wA) + dot(ax, vB) + dot(cross(rB, ax), vB)
- // J = [-ax -cross(d+rA, ax) ax cross(rB, ax)]
- // Motor rotational constraint
- // Cdot = wB - wA
- // J = [0 0 -1 0 0 1]
- void b2WheelJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor, const b2Vec2& axis) {
- bodyA = bA;
- bodyB = bB;
- localAnchorA = bodyA->GetLocalPoint(anchor);
- localAnchorB = bodyB->GetLocalPoint(anchor);
- localAxisA = bodyA->GetLocalVector(axis);
- }
- b2WheelJoint::b2WheelJoint(const b2WheelJointDef* def)
- : b2Joint(def) {
- m_localAnchorA = def->localAnchorA;
- m_localAnchorB = def->localAnchorB;
- m_localXAxisA = def->localAxisA;
- m_localYAxisA = b2Cross(1.0f, m_localXAxisA);
- m_mass = 0.0f;
- m_impulse = 0.0f;
- m_motorMass = 0.0f;
- m_motorImpulse = 0.0f;
- m_springMass = 0.0f;
- m_springImpulse = 0.0f;
- m_axialMass = 0.0f;
- m_lowerImpulse = 0.0f;
- m_upperImpulse = 0.0f;
- m_lowerTranslation = def->lowerTranslation;
- m_upperTranslation = def->upperTranslation;
- m_enableLimit = def->enableLimit;
- m_maxMotorTorque = def->maxMotorTorque;
- m_motorSpeed = def->motorSpeed;
- m_enableMotor = def->enableMotor;
- m_bias = 0.0f;
- m_gamma = 0.0f;
- m_ax.SetZero();
- m_ay.SetZero();
- m_stiffness = def->stiffness;
- m_damping = def->damping;
- }
- void b2WheelJoint::InitVelocityConstraints(const b2SolverData& data) {
- m_indexA = m_bodyA->m_islandIndex;
- m_indexB = m_bodyB->m_islandIndex;
- m_localCenterA = m_bodyA->m_sweep.localCenter;
- m_localCenterB = m_bodyB->m_sweep.localCenter;
- m_invMassA = m_bodyA->m_invMass;
- m_invMassB = m_bodyB->m_invMass;
- m_invIA = m_bodyA->m_invI;
- m_invIB = m_bodyB->m_invI;
- float mA = m_invMassA, mB = m_invMassB;
- float iA = m_invIA, iB = m_invIB;
- b2Vec2 cA = data.positions[m_indexA].c;
- float aA = data.positions[m_indexA].a;
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- b2Vec2 cB = data.positions[m_indexB].c;
- float aB = data.positions[m_indexB].a;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- b2Rot qA(aA), qB(aB);
- // Compute the effective masses.
- b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
- b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
- b2Vec2 d = cB + rB - cA - rA;
- // Point to line constraint
- {
- m_ay = b2Mul(qA, m_localYAxisA);
- m_sAy = b2Cross(d + rA, m_ay);
- m_sBy = b2Cross(rB, m_ay);
- m_mass = mA + mB + iA * m_sAy * m_sAy + iB * m_sBy * m_sBy;
- if (m_mass > 0.0f) {
- m_mass = 1.0f / m_mass;
- }
- }
- // Spring constraint
- m_ax = b2Mul(qA, m_localXAxisA);
- m_sAx = b2Cross(d + rA, m_ax);
- m_sBx = b2Cross(rB, m_ax);
- const float invMass = mA + mB + iA * m_sAx * m_sAx + iB * m_sBx * m_sBx;
- if (invMass > 0.0f) {
- m_axialMass = 1.0f / invMass;
- } else {
- m_axialMass = 0.0f;
- }
- m_springMass = 0.0f;
- m_bias = 0.0f;
- m_gamma = 0.0f;
- if (m_stiffness > 0.0f && invMass > 0.0f) {
- m_springMass = 1.0f / invMass;
- float C = b2Dot(d, m_ax);
- // magic formulas
- float h = data.step.dt;
- m_gamma = h * (m_damping + h * m_stiffness);
- if (m_gamma > 0.0f) {
- m_gamma = 1.0f / m_gamma;
- }
- m_bias = C * h * m_stiffness * m_gamma;
- m_springMass = invMass + m_gamma;
- if (m_springMass > 0.0f) {
- m_springMass = 1.0f / m_springMass;
- }
- } else {
- m_springImpulse = 0.0f;
- }
- if (m_enableLimit) {
- m_translation = b2Dot(m_ax, d);
- } else {
- m_lowerImpulse = 0.0f;
- m_upperImpulse = 0.0f;
- }
- if (m_enableMotor) {
- m_motorMass = iA + iB;
- if (m_motorMass > 0.0f) {
- m_motorMass = 1.0f / m_motorMass;
- }
- } else {
- m_motorMass = 0.0f;
- m_motorImpulse = 0.0f;
- }
- if (data.step.warmStarting) {
- // Account for variable time step.
- m_impulse *= data.step.dtRatio;
- m_springImpulse *= data.step.dtRatio;
- m_motorImpulse *= data.step.dtRatio;
- float axialImpulse = m_springImpulse + m_lowerImpulse - m_upperImpulse;
- b2Vec2 P = m_impulse * m_ay + axialImpulse * m_ax;
- float LA = m_impulse * m_sAy + axialImpulse * m_sAx + m_motorImpulse;
- float LB = m_impulse * m_sBy + axialImpulse * m_sBx + m_motorImpulse;
- vA -= m_invMassA * P;
- wA -= m_invIA * LA;
- vB += m_invMassB * P;
- wB += m_invIB * LB;
- } else {
- m_impulse = 0.0f;
- m_springImpulse = 0.0f;
- m_motorImpulse = 0.0f;
- m_lowerImpulse = 0.0f;
- m_upperImpulse = 0.0f;
- }
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- void b2WheelJoint::SolveVelocityConstraints(const b2SolverData& data) {
- float mA = m_invMassA, mB = m_invMassB;
- float iA = m_invIA, iB = m_invIB;
- b2Vec2 vA = data.velocities[m_indexA].v;
- float wA = data.velocities[m_indexA].w;
- b2Vec2 vB = data.velocities[m_indexB].v;
- float wB = data.velocities[m_indexB].w;
- // Solve spring constraint
- {
- float Cdot = b2Dot(m_ax, vB - vA) + m_sBx * wB - m_sAx * wA;
- float impulse = -m_springMass * (Cdot + m_bias + m_gamma * m_springImpulse);
- m_springImpulse += impulse;
- b2Vec2 P = impulse * m_ax;
- float LA = impulse * m_sAx;
- float LB = impulse * m_sBx;
- vA -= mA * P;
- wA -= iA * LA;
- vB += mB * P;
- wB += iB * LB;
- }
- // Solve rotational motor constraint
- {
- float Cdot = wB - wA - m_motorSpeed;
- float impulse = -m_motorMass * Cdot;
- float oldImpulse = m_motorImpulse;
- float maxImpulse = data.step.dt * m_maxMotorTorque;
- m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse);
- impulse = m_motorImpulse - oldImpulse;
- wA -= iA * impulse;
- wB += iB * impulse;
- }
- if (m_enableLimit) {
- // Lower limit
- {
- float C = m_translation - m_lowerTranslation;
- float Cdot = b2Dot(m_ax, vB - vA) + m_sBx * wB - m_sAx * wA;
- float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt);
- float oldImpulse = m_lowerImpulse;
- m_lowerImpulse = b2Max(m_lowerImpulse + impulse, 0.0f);
- impulse = m_lowerImpulse - oldImpulse;
- b2Vec2 P = impulse * m_ax;
- float LA = impulse * m_sAx;
- float LB = impulse * m_sBx;
- vA -= mA * P;
- wA -= iA * LA;
- vB += mB * P;
- wB += iB * LB;
- }
- // Upper limit
- // Note: signs are flipped to keep C positive when the constraint is satisfied.
- // This also keeps the impulse positive when the limit is active.
- {
- float C = m_upperTranslation - m_translation;
- float Cdot = b2Dot(m_ax, vA - vB) + m_sAx * wA - m_sBx * wB;
- float impulse = -m_axialMass * (Cdot + b2Max(C, 0.0f) * data.step.inv_dt);
- float oldImpulse = m_upperImpulse;
- m_upperImpulse = b2Max(m_upperImpulse + impulse, 0.0f);
- impulse = m_upperImpulse - oldImpulse;
- b2Vec2 P = impulse * m_ax;
- float LA = impulse * m_sAx;
- float LB = impulse * m_sBx;
- vA += mA * P;
- wA += iA * LA;
- vB -= mB * P;
- wB -= iB * LB;
- }
- }
- // Solve point to line constraint
- {
- float Cdot = b2Dot(m_ay, vB - vA) + m_sBy * wB - m_sAy * wA;
- float impulse = -m_mass * Cdot;
- m_impulse += impulse;
- b2Vec2 P = impulse * m_ay;
- float LA = impulse * m_sAy;
- float LB = impulse * m_sBy;
- vA -= mA * P;
- wA -= iA * LA;
- vB += mB * P;
- wB += iB * LB;
- }
- data.velocities[m_indexA].v = vA;
- data.velocities[m_indexA].w = wA;
- data.velocities[m_indexB].v = vB;
- data.velocities[m_indexB].w = wB;
- }
- bool b2WheelJoint::SolvePositionConstraints(const b2SolverData& data) {
- b2Vec2 cA = data.positions[m_indexA].c;
- float aA = data.positions[m_indexA].a;
- b2Vec2 cB = data.positions[m_indexB].c;
- float aB = data.positions[m_indexB].a;
- float linearError = 0.0f;
- if (m_enableLimit) {
- b2Rot qA(aA), qB(aB);
- b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
- b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
- b2Vec2 d = (cB - cA) + rB - rA;
- b2Vec2 ax = b2Mul(qA, m_localXAxisA);
- float sAx = b2Cross(d + rA, m_ax);
- float sBx = b2Cross(rB, m_ax);
- float C = 0.0f;
- float translation = b2Dot(ax, d);
- if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop) {
- C = translation;
- } else if (translation <= m_lowerTranslation) {
- C = b2Min(translation - m_lowerTranslation, 0.0f);
- } else if (translation >= m_upperTranslation) {
- C = b2Max(translation - m_upperTranslation, 0.0f);
- }
- if (C != 0.0f) {
- float invMass = m_invMassA + m_invMassB + m_invIA * sAx * sAx + m_invIB * sBx * sBx;
- float impulse = 0.0f;
- if (invMass != 0.0f) {
- impulse = -C / invMass;
- }
- b2Vec2 P = impulse * ax;
- float LA = impulse * sAx;
- float LB = impulse * sBx;
- cA -= m_invMassA * P;
- aA -= m_invIA * LA;
- cB += m_invMassB * P;
- aB += m_invIB * LB;
- linearError = b2Abs(C);
- }
- }
- // Solve perpendicular constraint
- {
- b2Rot qA(aA), qB(aB);
- b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
- b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
- b2Vec2 d = (cB - cA) + rB - rA;
- b2Vec2 ay = b2Mul(qA, m_localYAxisA);
- float sAy = b2Cross(d + rA, ay);
- float sBy = b2Cross(rB, ay);
- float C = b2Dot(d, ay);
- float invMass = m_invMassA + m_invMassB + m_invIA * m_sAy * m_sAy + m_invIB * m_sBy * m_sBy;
- float impulse = 0.0f;
- if (invMass != 0.0f) {
- impulse = -C / invMass;
- }
- b2Vec2 P = impulse * ay;
- float LA = impulse * sAy;
- float LB = impulse * sBy;
- cA -= m_invMassA * P;
- aA -= m_invIA * LA;
- cB += m_invMassB * P;
- aB += m_invIB * LB;
- linearError = b2Max(linearError, b2Abs(C));
- }
- data.positions[m_indexA].c = cA;
- data.positions[m_indexA].a = aA;
- data.positions[m_indexB].c = cB;
- data.positions[m_indexB].a = aB;
- return linearError <= b2_linearSlop;
- }
- b2Vec2 b2WheelJoint::GetAnchorA() const {
- return m_bodyA->GetWorldPoint(m_localAnchorA);
- }
- b2Vec2 b2WheelJoint::GetAnchorB() const {
- return m_bodyB->GetWorldPoint(m_localAnchorB);
- }
- b2Vec2 b2WheelJoint::GetReactionForce(float inv_dt) const {
- return inv_dt * (m_impulse * m_ay + (m_springImpulse + m_lowerImpulse - m_upperImpulse) * m_ax);
- }
- float b2WheelJoint::GetReactionTorque(float inv_dt) const {
- return inv_dt * m_motorImpulse;
- }
- float b2WheelJoint::GetJointTranslation() const {
- b2Body* bA = m_bodyA;
- b2Body* bB = m_bodyB;
- b2Vec2 pA = bA->GetWorldPoint(m_localAnchorA);
- b2Vec2 pB = bB->GetWorldPoint(m_localAnchorB);
- b2Vec2 d = pB - pA;
- b2Vec2 axis = bA->GetWorldVector(m_localXAxisA);
- float translation = b2Dot(d, axis);
- return translation;
- }
- float b2WheelJoint::GetJointLinearSpeed() const {
- b2Body* bA = m_bodyA;
- b2Body* bB = m_bodyB;
- b2Vec2 rA = b2Mul(bA->m_xf.q, m_localAnchorA - bA->m_sweep.localCenter);
- b2Vec2 rB = b2Mul(bB->m_xf.q, m_localAnchorB - bB->m_sweep.localCenter);
- b2Vec2 p1 = bA->m_sweep.c + rA;
- b2Vec2 p2 = bB->m_sweep.c + rB;
- b2Vec2 d = p2 - p1;
- b2Vec2 axis = b2Mul(bA->m_xf.q, m_localXAxisA);
- b2Vec2 vA = bA->m_linearVelocity;
- b2Vec2 vB = bB->m_linearVelocity;
- float wA = bA->m_angularVelocity;
- float wB = bB->m_angularVelocity;
- float speed = b2Dot(d, b2Cross(wA, axis)) + b2Dot(axis, vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA));
- return speed;
- }
- float b2WheelJoint::GetJointAngle() const {
- b2Body* bA = m_bodyA;
- b2Body* bB = m_bodyB;
- return bB->m_sweep.a - bA->m_sweep.a;
- }
- float b2WheelJoint::GetJointAngularSpeed() const {
- float wA = m_bodyA->m_angularVelocity;
- float wB = m_bodyB->m_angularVelocity;
- return wB - wA;
- }
- bool b2WheelJoint::IsLimitEnabled() const {
- return m_enableLimit;
- }
- void b2WheelJoint::EnableLimit(bool flag) {
- if (flag != m_enableLimit) {
- m_bodyA->SetAwake(true);
- m_bodyB->SetAwake(true);
- m_enableLimit = flag;
- m_lowerImpulse = 0.0f;
- m_upperImpulse = 0.0f;
- }
- }
- float b2WheelJoint::GetLowerLimit() const {
- return m_lowerTranslation;
- }
- float b2WheelJoint::GetUpperLimit() const {
- return m_upperTranslation;
- }
- void b2WheelJoint::SetLimits(float lower, float upper) {
- b2Assert(lower <= upper);
- if (lower != m_lowerTranslation || upper != m_upperTranslation) {
- m_bodyA->SetAwake(true);
- m_bodyB->SetAwake(true);
- m_lowerTranslation = lower;
- m_upperTranslation = upper;
- m_lowerImpulse = 0.0f;
- m_upperImpulse = 0.0f;
- }
- }
- bool b2WheelJoint::IsMotorEnabled() const {
- return m_enableMotor;
- }
- void b2WheelJoint::EnableMotor(bool flag) {
- if (flag != m_enableMotor) {
- m_bodyA->SetAwake(true);
- m_bodyB->SetAwake(true);
- m_enableMotor = flag;
- }
- }
- void b2WheelJoint::SetMotorSpeed(float speed) {
- if (speed != m_motorSpeed) {
- m_bodyA->SetAwake(true);
- m_bodyB->SetAwake(true);
- m_motorSpeed = speed;
- }
- }
- void b2WheelJoint::SetMaxMotorTorque(float torque) {
- if (torque != m_maxMotorTorque) {
- m_bodyA->SetAwake(true);
- m_bodyB->SetAwake(true);
- m_maxMotorTorque = torque;
- }
- }
- float b2WheelJoint::GetMotorTorque(float inv_dt) const {
- return inv_dt * m_motorImpulse;
- }
- void b2WheelJoint::SetStiffness(float stiffness) {
- m_stiffness = stiffness;
- }
- float b2WheelJoint::GetStiffness() const {
- return m_stiffness;
- }
- void b2WheelJoint::SetDamping(float damping) {
- m_damping = damping;
- }
- float b2WheelJoint::GetDamping() const {
- return m_damping;
- }
- void b2WheelJoint::Dump() {
- // FLT_DECIMAL_DIG == 9
- int32 indexA = m_bodyA->m_islandIndex;
- int32 indexB = m_bodyB->m_islandIndex;
- b2Dump(" b2WheelJointDef jd;\n");
- b2Dump(" jd.bodyA = bodies[%d];\n", indexA);
- b2Dump(" jd.bodyB = bodies[%d];\n", indexB);
- b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected);
- b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y);
- b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y);
- b2Dump(" jd.localAxisA.Set(%.9g, %.9g);\n", m_localXAxisA.x, m_localXAxisA.y);
- b2Dump(" jd.enableMotor = bool(%d);\n", m_enableMotor);
- b2Dump(" jd.motorSpeed = %.9g;\n", m_motorSpeed);
- b2Dump(" jd.maxMotorTorque = %.9g;\n", m_maxMotorTorque);
- b2Dump(" jd.stiffness = %.9g;\n", m_stiffness);
- b2Dump(" jd.damping = %.9g;\n", m_damping);
- b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
- }
- ///
- void b2WheelJoint::Draw(b2Draw* draw) const {
- const b2Transform& xfA = m_bodyA->GetTransform();
- const b2Transform& xfB = m_bodyB->GetTransform();
- b2Vec2 pA = b2Mul(xfA, m_localAnchorA);
- b2Vec2 pB = b2Mul(xfB, m_localAnchorB);
- b2Vec2 axis = b2Mul(xfA.q, m_localXAxisA);
- b2Color c1(0.7f, 0.7f, 0.7f);
- b2Color c2(0.3f, 0.9f, 0.3f);
- b2Color c3(0.9f, 0.3f, 0.3f);
- b2Color c4(0.3f, 0.3f, 0.9f);
- b2Color c5(0.4f, 0.4f, 0.4f);
- draw->DrawSegment(pA, pB, c5);
- if (m_enableLimit) {
- b2Vec2 lower = pA + m_lowerTranslation * axis;
- b2Vec2 upper = pA + m_upperTranslation * axis;
- b2Vec2 perp = b2Mul(xfA.q, m_localYAxisA);
- draw->DrawSegment(lower, upper, c1);
- draw->DrawSegment(lower - 0.5f * perp, lower + 0.5f * perp, c2);
- draw->DrawSegment(upper - 0.5f * perp, upper + 0.5f * perp, c3);
- } else {
- draw->DrawSegment(pA - 1.0f * axis, pA + 1.0f * axis, c1);
- }
- draw->DrawPoint(pA, 5.0f, c1);
- draw->DrawPoint(pB, 5.0f, c4);
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "b2_contact_solver.h"
- //#include "b2_island.h"
- //#include "box2d/b2_body.h"
- //#include "box2d/b2_broad_phase.h"
- //#include "box2d/b2_chain_shape.h"
- //#include "box2d/b2_circle_shape.h"
- //#include "box2d/b2_collision.h"
- //#include "box2d/b2_contact.h"
- //#include "box2d/b2_draw.h"
- //#include "box2d/b2_edge_shape.h"
- //#include "box2d/b2_fixture.h"
- //#include "box2d/b2_polygon_shape.h"
- //#include "box2d/b2_pulley_joint.h"
- //#include "box2d/b2_time_of_impact.h"
- //#include "box2d/b2_timer.h"
- //#include "box2d/b2_world.h"
- #include <new>
- b2World::b2World(const b2Vec2& gravity) {
- m_destructionListener = nullptr;
- m_debugDraw = nullptr;
- m_bodyList = nullptr;
- m_jointList = nullptr;
- m_bodyCount = 0;
- m_jointCount = 0;
- m_warmStarting = true;
- m_continuousPhysics = true;
- m_subStepping = false;
- m_stepComplete = true;
- m_allowSleep = true;
- m_gravity = gravity;
- m_newContacts = false;
- m_locked = false;
- m_clearForces = true;
- m_inv_dt0 = 0.0f;
- m_contactManager.m_allocator = &m_blockAllocator;
- memset(&m_profile, 0, sizeof(b2Profile));
- }
- b2World::~b2World() {
- // Some shapes allocate using b2Alloc.
- b2Body* b = m_bodyList;
- while (b) {
- b2Body* bNext = b->m_next;
- b2Fixture* f = b->m_fixtureList;
- while (f) {
- b2Fixture* fNext = f->m_next;
- f->m_proxyCount = 0;
- f->Destroy(&m_blockAllocator);
- f = fNext;
- }
- b = bNext;
- }
- }
- void b2World::SetDestructionListener(b2DestructionListener* listener) {
- m_destructionListener = listener;
- }
- void b2World::SetContactFilter(b2ContactFilter* filter) {
- m_contactManager.m_contactFilter = filter;
- }
- void b2World::SetContactListener(b2ContactListener* listener) {
- m_contactManager.m_contactListener = listener;
- }
- void b2World::SetDebugDraw(b2Draw* debugDraw) {
- m_debugDraw = debugDraw;
- }
- b2Body* b2World::CreateBody(const b2BodyDef* def) {
- b2Assert(IsLocked() == false);
- if (IsLocked()) {
- return nullptr;
- }
- void* mem = m_blockAllocator.Allocate(sizeof(b2Body));
- b2Body* b = new (mem) b2Body(def, this);
- // Add to world doubly linked list.
- b->m_prev = nullptr;
- b->m_next = m_bodyList;
- if (m_bodyList) {
- m_bodyList->m_prev = b;
- }
- m_bodyList = b;
- ++m_bodyCount;
- return b;
- }
- void b2World::DestroyBody(b2Body* b) {
- b2Assert(m_bodyCount > 0);
- b2Assert(IsLocked() == false);
- if (IsLocked()) {
- return;
- }
- // Delete the attached joints.
- b2JointEdge* je = b->m_jointList;
- while (je) {
- b2JointEdge* je0 = je;
- je = je->next;
- if (m_destructionListener) {
- m_destructionListener->SayGoodbye(je0->joint);
- }
- DestroyJoint(je0->joint);
- b->m_jointList = je;
- }
- b->m_jointList = nullptr;
- // Delete the attached contacts.
- b2ContactEdge* ce = b->m_contactList;
- while (ce) {
- b2ContactEdge* ce0 = ce;
- ce = ce->next;
- m_contactManager.Destroy(ce0->contact);
- }
- b->m_contactList = nullptr;
- // Delete the attached fixtures. This destroys broad-phase proxies.
- b2Fixture* f = b->m_fixtureList;
- while (f) {
- b2Fixture* f0 = f;
- f = f->m_next;
- if (m_destructionListener) {
- m_destructionListener->SayGoodbye(f0);
- }
- f0->DestroyProxies(&m_contactManager.m_broadPhase);
- f0->Destroy(&m_blockAllocator);
- f0->~b2Fixture();
- m_blockAllocator.Free(f0, sizeof(b2Fixture));
- b->m_fixtureList = f;
- b->m_fixtureCount -= 1;
- }
- b->m_fixtureList = nullptr;
- b->m_fixtureCount = 0;
- // Remove world body list.
- if (b->m_prev) {
- b->m_prev->m_next = b->m_next;
- }
- if (b->m_next) {
- b->m_next->m_prev = b->m_prev;
- }
- if (b == m_bodyList) {
- m_bodyList = b->m_next;
- }
- --m_bodyCount;
- b->~b2Body();
- m_blockAllocator.Free(b, sizeof(b2Body));
- }
- b2Joint* b2World::CreateJoint(const b2JointDef* def) {
- b2Assert(IsLocked() == false);
- if (IsLocked()) {
- return nullptr;
- }
- b2Joint* j = b2Joint::Create(def, &m_blockAllocator);
- // Connect to the world list.
- j->m_prev = nullptr;
- j->m_next = m_jointList;
- if (m_jointList) {
- m_jointList->m_prev = j;
- }
- m_jointList = j;
- ++m_jointCount;
- // Connect to the bodies' doubly linked lists.
- j->m_edgeA.joint = j;
- j->m_edgeA.other = j->m_bodyB;
- j->m_edgeA.prev = nullptr;
- j->m_edgeA.next = j->m_bodyA->m_jointList;
- if (j->m_bodyA->m_jointList) j->m_bodyA->m_jointList->prev = &j->m_edgeA;
- j->m_bodyA->m_jointList = &j->m_edgeA;
- j->m_edgeB.joint = j;
- j->m_edgeB.other = j->m_bodyA;
- j->m_edgeB.prev = nullptr;
- j->m_edgeB.next = j->m_bodyB->m_jointList;
- if (j->m_bodyB->m_jointList) j->m_bodyB->m_jointList->prev = &j->m_edgeB;
- j->m_bodyB->m_jointList = &j->m_edgeB;
- b2Body* bodyA = def->bodyA;
- b2Body* bodyB = def->bodyB;
- // If the joint prevents collisions, then flag any contacts for filtering.
- if (def->collideConnected == false) {
- b2ContactEdge* edge = bodyB->GetContactList();
- while (edge) {
- if (edge->other == bodyA) {
- // Flag the contact for filtering at the next time step (where either
- // body is awake).
- edge->contact->FlagForFiltering();
- }
- edge = edge->next;
- }
- }
- // Note: creating a joint doesn't wake the bodies.
- return j;
- }
- void b2World::DestroyJoint(b2Joint* j) {
- b2Assert(IsLocked() == false);
- if (IsLocked()) {
- return;
- }
- bool collideConnected = j->m_collideConnected;
- // Remove from the doubly linked list.
- if (j->m_prev) {
- j->m_prev->m_next = j->m_next;
- }
- if (j->m_next) {
- j->m_next->m_prev = j->m_prev;
- }
- if (j == m_jointList) {
- m_jointList = j->m_next;
- }
- // Disconnect from island graph.
- b2Body* bodyA = j->m_bodyA;
- b2Body* bodyB = j->m_bodyB;
- // Wake up connected bodies.
- bodyA->SetAwake(true);
- bodyB->SetAwake(true);
- // Remove from body 1.
- if (j->m_edgeA.prev) {
- j->m_edgeA.prev->next = j->m_edgeA.next;
- }
- if (j->m_edgeA.next) {
- j->m_edgeA.next->prev = j->m_edgeA.prev;
- }
- if (&j->m_edgeA == bodyA->m_jointList) {
- bodyA->m_jointList = j->m_edgeA.next;
- }
- j->m_edgeA.prev = nullptr;
- j->m_edgeA.next = nullptr;
- // Remove from body 2
- if (j->m_edgeB.prev) {
- j->m_edgeB.prev->next = j->m_edgeB.next;
- }
- if (j->m_edgeB.next) {
- j->m_edgeB.next->prev = j->m_edgeB.prev;
- }
- if (&j->m_edgeB == bodyB->m_jointList) {
- bodyB->m_jointList = j->m_edgeB.next;
- }
- j->m_edgeB.prev = nullptr;
- j->m_edgeB.next = nullptr;
- b2Joint::Destroy(j, &m_blockAllocator);
- b2Assert(m_jointCount > 0);
- --m_jointCount;
- // If the joint prevents collisions, then flag any contacts for filtering.
- if (collideConnected == false) {
- b2ContactEdge* edge = bodyB->GetContactList();
- while (edge) {
- if (edge->other == bodyA) {
- // Flag the contact for filtering at the next time step (where either
- // body is awake).
- edge->contact->FlagForFiltering();
- }
- edge = edge->next;
- }
- }
- }
- //
- void b2World::SetAllowSleeping(bool flag) {
- if (flag == m_allowSleep) {
- return;
- }
- m_allowSleep = flag;
- if (m_allowSleep == false) {
- for (b2Body* b = m_bodyList; b; b = b->m_next) {
- b->SetAwake(true);
- }
- }
- }
- // Find islands, integrate and solve constraints, solve position constraints
- void b2World::Solve(const b2TimeStep& step) {
- m_profile.solveInit = 0.0f;
- m_profile.solveVelocity = 0.0f;
- m_profile.solvePosition = 0.0f;
- // Size the island for the worst case.
- b2Island island(m_bodyCount,
- m_contactManager.m_contactCount,
- m_jointCount,
- &m_stackAllocator,
- m_contactManager.m_contactListener);
- // Clear all the island flags.
- for (b2Body* b = m_bodyList; b; b = b->m_next) {
- b->m_flags &= ~b2Body::e_islandFlag;
- }
- for (b2Contact* c = m_contactManager.m_contactList; c; c = c->m_next) {
- c->m_flags &= ~b2Contact::e_islandFlag;
- }
- for (b2Joint* j = m_jointList; j; j = j->m_next) {
- j->m_islandFlag = false;
- }
- // Build and simulate all awake islands.
- int32 stackSize = m_bodyCount;
- b2Body** stack = (b2Body**)m_stackAllocator.Allocate(stackSize * sizeof(b2Body*));
- for (b2Body* seed = m_bodyList; seed; seed = seed->m_next) {
- if (seed->m_flags & b2Body::e_islandFlag) {
- continue;
- }
- if (seed->IsAwake() == false || seed->IsEnabled() == false) {
- continue;
- }
- // The seed can be dynamic or kinematic.
- if (seed->GetType() == b2_staticBody) {
- continue;
- }
- // Reset island and stack.
- island.Clear();
- int32 stackCount = 0;
- stack[stackCount++] = seed;
- seed->m_flags |= b2Body::e_islandFlag;
- // Perform a depth first search (DFS) on the constraint graph.
- while (stackCount > 0) {
- // Grab the next body off the stack and add it to the island.
- b2Body* b = stack[--stackCount];
- b2Assert(b->IsEnabled() == true);
- island.Add(b);
- // To keep islands as small as possible, we don't
- // propagate islands across static bodies.
- if (b->GetType() == b2_staticBody) {
- continue;
- }
- // Make sure the body is awake (without resetting sleep timer).
- b->m_flags |= b2Body::e_awakeFlag;
- // Search all contacts connected to this body.
- for (b2ContactEdge* ce = b->m_contactList; ce; ce = ce->next) {
- b2Contact* contact = ce->contact;
- // Has this contact already been added to an island?
- if (contact->m_flags & b2Contact::e_islandFlag) {
- continue;
- }
- // Is this contact solid and touching?
- if (contact->IsEnabled() == false ||
- contact->IsTouching() == false) {
- continue;
- }
- // Skip sensors.
- bool sensorA = contact->m_fixtureA->m_isSensor;
- bool sensorB = contact->m_fixtureB->m_isSensor;
- if (sensorA || sensorB) {
- continue;
- }
- island.Add(contact);
- contact->m_flags |= b2Contact::e_islandFlag;
- b2Body* other = ce->other;
- // Was the other body already added to this island?
- if (other->m_flags & b2Body::e_islandFlag) {
- continue;
- }
- b2Assert(stackCount < stackSize);
- stack[stackCount++] = other;
- other->m_flags |= b2Body::e_islandFlag;
- }
- // Search all joints connect to this body.
- for (b2JointEdge* je = b->m_jointList; je; je = je->next) {
- if (je->joint->m_islandFlag == true) {
- continue;
- }
- b2Body* other = je->other;
- // Don't simulate joints connected to diabled bodies.
- if (other->IsEnabled() == false) {
- continue;
- }
- island.Add(je->joint);
- je->joint->m_islandFlag = true;
- if (other->m_flags & b2Body::e_islandFlag) {
- continue;
- }
- b2Assert(stackCount < stackSize);
- stack[stackCount++] = other;
- other->m_flags |= b2Body::e_islandFlag;
- }
- }
- b2Profile profile;
- island.Solve(&profile, step, m_gravity, m_allowSleep);
- m_profile.solveInit += profile.solveInit;
- m_profile.solveVelocity += profile.solveVelocity;
- m_profile.solvePosition += profile.solvePosition;
- // Post solve cleanup.
- for (int32 i = 0; i < island.m_bodyCount; ++i) {
- // Allow static bodies to participate in other islands.
- b2Body* b = island.m_bodies[i];
- if (b->GetType() == b2_staticBody) {
- b->m_flags &= ~b2Body::e_islandFlag;
- }
- }
- }
- m_stackAllocator.Free(stack);
- {
- b2Timer timer;
- // Synchronize fixtures, check for out of range bodies.
- for (b2Body* b = m_bodyList; b; b = b->GetNext()) {
- // If a body was not in an island then it did not move.
- if ((b->m_flags & b2Body::e_islandFlag) == 0) {
- continue;
- }
- if (b->GetType() == b2_staticBody) {
- continue;
- }
- // Update fixtures (for broad-phase).
- b->SynchronizeFixtures();
- }
- // Look for new contacts.
- m_contactManager.FindNewContacts();
- m_profile.broadphase = timer.GetMilliseconds();
- }
- }
- // Find TOI contacts and solve them.
- void b2World::SolveTOI(const b2TimeStep& step) {
- b2Island island(2 * b2_maxTOIContacts, b2_maxTOIContacts, 0, &m_stackAllocator, m_contactManager.m_contactListener);
- if (m_stepComplete) {
- for (b2Body* b = m_bodyList; b; b = b->m_next) {
- b->m_flags &= ~b2Body::e_islandFlag;
- b->m_sweep.alpha0 = 0.0f;
- }
- for (b2Contact* c = m_contactManager.m_contactList; c; c = c->m_next) {
- // Invalidate TOI
- c->m_flags &= ~(b2Contact::e_toiFlag | b2Contact::e_islandFlag);
- c->m_toiCount = 0;
- c->m_toi = 1.0f;
- }
- }
- // Find TOI events and solve them.
- for (;;) {
- // Find the first TOI.
- b2Contact* minContact = nullptr;
- float minAlpha = 1.0f;
- for (b2Contact* c = m_contactManager.m_contactList; c; c = c->m_next) {
- // Is this contact disabled?
- if (c->IsEnabled() == false) {
- continue;
- }
- // Prevent excessive sub-stepping.
- if (c->m_toiCount > b2_maxSubSteps) {
- continue;
- }
- float alpha = 1.0f;
- if (c->m_flags & b2Contact::e_toiFlag) {
- // This contact has a valid cached TOI.
- alpha = c->m_toi;
- } else {
- b2Fixture* fA = c->GetFixtureA();
- b2Fixture* fB = c->GetFixtureB();
- // Is there a sensor?
- if (fA->IsSensor() || fB->IsSensor()) {
- continue;
- }
- b2Body* bA = fA->GetBody();
- b2Body* bB = fB->GetBody();
- b2BodyType typeA = bA->m_type;
- b2BodyType typeB = bB->m_type;
- b2Assert(typeA == b2_dynamicBody || typeB == b2_dynamicBody);
- bool activeA = bA->IsAwake() && typeA != b2_staticBody;
- bool activeB = bB->IsAwake() && typeB != b2_staticBody;
- // Is at least one body active (awake and dynamic or kinematic)?
- if (activeA == false && activeB == false) {
- continue;
- }
- bool collideA = bA->IsBullet() || typeA != b2_dynamicBody;
- bool collideB = bB->IsBullet() || typeB != b2_dynamicBody;
- // Are these two non-bullet dynamic bodies?
- if (collideA == false && collideB == false) {
- continue;
- }
- // Compute the TOI for this contact.
- // Put the sweeps onto the same time interval.
- float alpha0 = bA->m_sweep.alpha0;
- if (bA->m_sweep.alpha0 < bB->m_sweep.alpha0) {
- alpha0 = bB->m_sweep.alpha0;
- bA->m_sweep.Advance(alpha0);
- } else if (bB->m_sweep.alpha0 < bA->m_sweep.alpha0) {
- alpha0 = bA->m_sweep.alpha0;
- bB->m_sweep.Advance(alpha0);
- }
- b2Assert(alpha0 < 1.0f);
- int32 indexA = c->GetChildIndexA();
- int32 indexB = c->GetChildIndexB();
- // Compute the time of impact in interval [0, minTOI]
- b2TOIInput input;
- input.proxyA.Set(fA->GetShape(), indexA);
- input.proxyB.Set(fB->GetShape(), indexB);
- input.sweepA = bA->m_sweep;
- input.sweepB = bB->m_sweep;
- input.tMax = 1.0f;
- b2TOIOutput output;
- b2TimeOfImpact(&output, &input);
- // Beta is the fraction of the remaining portion of the .
- float beta = output.t;
- if (output.state == b2TOIOutput::e_touching) {
- alpha = b2Min(alpha0 + (1.0f - alpha0) * beta, 1.0f);
- } else {
- alpha = 1.0f;
- }
- c->m_toi = alpha;
- c->m_flags |= b2Contact::e_toiFlag;
- }
- if (alpha < minAlpha) {
- // This is the minimum TOI found so far.
- minContact = c;
- minAlpha = alpha;
- }
- }
- if (minContact == nullptr || 1.0f - 10.0f * b2_epsilon < minAlpha) {
- // No more TOI events. Done!
- m_stepComplete = true;
- break;
- }
- // Advance the bodies to the TOI.
- b2Fixture* fA = minContact->GetFixtureA();
- b2Fixture* fB = minContact->GetFixtureB();
- b2Body* bA = fA->GetBody();
- b2Body* bB = fB->GetBody();
- b2Sweep backup1 = bA->m_sweep;
- b2Sweep backup2 = bB->m_sweep;
- bA->Advance(minAlpha);
- bB->Advance(minAlpha);
- // The TOI contact likely has some new contact points.
- minContact->Update(m_contactManager.m_contactListener);
- minContact->m_flags &= ~b2Contact::e_toiFlag;
- ++minContact->m_toiCount;
- // Is the contact solid?
- if (minContact->IsEnabled() == false || minContact->IsTouching() == false) {
- // Restore the sweeps.
- minContact->SetEnabled(false);
- bA->m_sweep = backup1;
- bB->m_sweep = backup2;
- bA->SynchronizeTransform();
- bB->SynchronizeTransform();
- continue;
- }
- bA->SetAwake(true);
- bB->SetAwake(true);
- // Build the island
- island.Clear();
- island.Add(bA);
- island.Add(bB);
- island.Add(minContact);
- bA->m_flags |= b2Body::e_islandFlag;
- bB->m_flags |= b2Body::e_islandFlag;
- minContact->m_flags |= b2Contact::e_islandFlag;
- // Get contacts on bodyA and bodyB.
- b2Body* bodies[2] = { bA, bB };
- for (int32 i = 0; i < 2; ++i) {
- b2Body* body = bodies[i];
- if (body->m_type == b2_dynamicBody) {
- for (b2ContactEdge* ce = body->m_contactList; ce; ce = ce->next) {
- if (island.m_bodyCount == island.m_bodyCapacity) {
- break;
- }
- if (island.m_contactCount == island.m_contactCapacity) {
- break;
- }
- b2Contact* contact = ce->contact;
- // Has this contact already been added to the island?
- if (contact->m_flags & b2Contact::e_islandFlag) {
- continue;
- }
- // Only add static, kinematic, or bullet bodies.
- b2Body* other = ce->other;
- if (other->m_type == b2_dynamicBody &&
- body->IsBullet() == false && other->IsBullet() == false) {
- continue;
- }
- // Skip sensors.
- bool sensorA = contact->m_fixtureA->m_isSensor;
- bool sensorB = contact->m_fixtureB->m_isSensor;
- if (sensorA || sensorB) {
- continue;
- }
- // Tentatively advance the body to the TOI.
- b2Sweep backup = other->m_sweep;
- if ((other->m_flags & b2Body::e_islandFlag) == 0) {
- other->Advance(minAlpha);
- }
- // Update the contact points
- contact->Update(m_contactManager.m_contactListener);
- // Was the contact disabled by the user?
- if (contact->IsEnabled() == false) {
- other->m_sweep = backup;
- other->SynchronizeTransform();
- continue;
- }
- // Are there contact points?
- if (contact->IsTouching() == false) {
- other->m_sweep = backup;
- other->SynchronizeTransform();
- continue;
- }
- // Add the contact to the island
- contact->m_flags |= b2Contact::e_islandFlag;
- island.Add(contact);
- // Has the other body already been added to the island?
- if (other->m_flags & b2Body::e_islandFlag) {
- continue;
- }
- // Add the other body to the island.
- other->m_flags |= b2Body::e_islandFlag;
- if (other->m_type != b2_staticBody) {
- other->SetAwake(true);
- }
- island.Add(other);
- }
- }
- }
- b2TimeStep subStep;
- subStep.dt = (1.0f - minAlpha) * step.dt;
- subStep.inv_dt = 1.0f / subStep.dt;
- subStep.dtRatio = 1.0f;
- subStep.positionIterations = 20;
- subStep.velocityIterations = step.velocityIterations;
- subStep.warmStarting = false;
- island.SolveTOI(subStep, bA->m_islandIndex, bB->m_islandIndex);
- // Reset island flags and synchronize broad-phase proxies.
- for (int32 i = 0; i < island.m_bodyCount; ++i) {
- b2Body* body = island.m_bodies[i];
- body->m_flags &= ~b2Body::e_islandFlag;
- if (body->m_type != b2_dynamicBody) {
- continue;
- }
- body->SynchronizeFixtures();
- // Invalidate all contact TOIs on this displaced body.
- for (b2ContactEdge* ce = body->m_contactList; ce; ce = ce->next) {
- ce->contact->m_flags &= ~(b2Contact::e_toiFlag | b2Contact::e_islandFlag);
- }
- }
- // Commit fixture proxy movements to the broad-phase so that new contacts are created.
- // Also, some contacts can be destroyed.
- m_contactManager.FindNewContacts();
- if (m_subStepping) {
- m_stepComplete = false;
- break;
- }
- }
- }
- void b2World::Step(float dt, int32 velocityIterations, int32 positionIterations) {
- b2Timer stepTimer;
- // If new fixtures were added, we need to find the new contacts.
- if (m_newContacts) {
- m_contactManager.FindNewContacts();
- m_newContacts = false;
- }
- m_locked = true;
- b2TimeStep step;
- step.dt = dt;
- step.velocityIterations = velocityIterations;
- step.positionIterations = positionIterations;
- if (dt > 0.0f) {
- step.inv_dt = 1.0f / dt;
- } else {
- step.inv_dt = 0.0f;
- }
- step.dtRatio = m_inv_dt0 * dt;
- step.warmStarting = m_warmStarting;
- // Update contacts. This is where some contacts are destroyed.
- {
- b2Timer timer;
- m_contactManager.Collide();
- m_profile.collide = timer.GetMilliseconds();
- }
- // Integrate velocities, solve velocity constraints, and integrate positions.
- if (m_stepComplete && step.dt > 0.0f) {
- b2Timer timer;
- Solve(step);
- m_profile.solve = timer.GetMilliseconds();
- }
- // Handle TOI events.
- if (m_continuousPhysics && step.dt > 0.0f) {
- b2Timer timer;
- SolveTOI(step);
- m_profile.solveTOI = timer.GetMilliseconds();
- }
- if (step.dt > 0.0f) {
- m_inv_dt0 = step.inv_dt;
- }
- if (m_clearForces) {
- ClearForces();
- }
- m_locked = false;
- m_profile.step = stepTimer.GetMilliseconds();
- }
- void b2World::ClearForces() {
- for (b2Body* body = m_bodyList; body; body = body->GetNext()) {
- body->m_force.SetZero();
- body->m_torque = 0.0f;
- }
- }
- struct b2WorldQueryWrapper {
- bool QueryCallback(int32 proxyId) {
- b2FixtureProxy* proxy = (b2FixtureProxy*)broadPhase->GetUserData(proxyId);
- return callback->ReportFixture(proxy->fixture);
- }
- const b2BroadPhase* broadPhase;
- b2QueryCallback* callback;
- };
- void b2World::QueryAABB(b2QueryCallback* callback, const b2AABB& aabb) const {
- b2WorldQueryWrapper wrapper;
- wrapper.broadPhase = &m_contactManager.m_broadPhase;
- wrapper.callback = callback;
- m_contactManager.m_broadPhase.Query(&wrapper, aabb);
- }
- struct b2WorldRayCastWrapper {
- float RayCastCallback(const b2RayCastInput& input, int32 proxyId) {
- void* userData = broadPhase->GetUserData(proxyId);
- b2FixtureProxy* proxy = (b2FixtureProxy*)userData;
- b2Fixture* fixture = proxy->fixture;
- int32 index = proxy->childIndex;
- b2RayCastOutput output;
- bool hit = fixture->RayCast(&output, input, index);
- if (hit) {
- float fraction = output.fraction;
- b2Vec2 point = (1.0f - fraction) * input.p1 + fraction * input.p2;
- return callback->ReportFixture(fixture, point, output.normal, fraction);
- }
- return input.maxFraction;
- }
- const b2BroadPhase* broadPhase;
- b2RayCastCallback* callback;
- };
- void b2World::RayCast(b2RayCastCallback* callback, const b2Vec2& point1, const b2Vec2& point2) const {
- b2WorldRayCastWrapper wrapper;
- wrapper.broadPhase = &m_contactManager.m_broadPhase;
- wrapper.callback = callback;
- b2RayCastInput input;
- input.maxFraction = 1.0f;
- input.p1 = point1;
- input.p2 = point2;
- m_contactManager.m_broadPhase.RayCast(&wrapper, input);
- }
- void b2World::DrawShape(b2Fixture* fixture, const b2Transform& xf, const b2Color& color) {
- switch (fixture->GetType()) {
- case b2Shape::e_circle:
- {
- b2CircleShape* circle = (b2CircleShape*)fixture->GetShape();
- b2Vec2 center = b2Mul(xf, circle->m_p);
- float radius = circle->m_radius;
- b2Vec2 axis = b2Mul(xf.q, b2Vec2(1.0f, 0.0f));
- m_debugDraw->DrawSolidCircle(center, radius, axis, color);
- }
- break;
- case b2Shape::e_edge:
- {
- b2EdgeShape* edge = (b2EdgeShape*)fixture->GetShape();
- b2Vec2 v1 = b2Mul(xf, edge->m_vertex1);
- b2Vec2 v2 = b2Mul(xf, edge->m_vertex2);
- m_debugDraw->DrawSegment(v1, v2, color);
- if (edge->m_oneSided == false) {
- m_debugDraw->DrawPoint(v1, 4.0f, color);
- m_debugDraw->DrawPoint(v2, 4.0f, color);
- }
- }
- break;
- case b2Shape::e_chain:
- {
- b2ChainShape* chain = (b2ChainShape*)fixture->GetShape();
- int32 count = chain->m_count;
- const b2Vec2* vertices = chain->m_vertices;
- b2Vec2 v1 = b2Mul(xf, vertices[0]);
- for (int32 i = 1; i < count; ++i) {
- b2Vec2 v2 = b2Mul(xf, vertices[i]);
- m_debugDraw->DrawSegment(v1, v2, color);
- v1 = v2;
- }
- }
- break;
- case b2Shape::e_polygon:
- {
- b2PolygonShape* poly = (b2PolygonShape*)fixture->GetShape();
- int32 vertexCount = poly->m_count;
- b2Assert(vertexCount <= b2_maxPolygonVertices);
- b2Vec2 vertices[b2_maxPolygonVertices];
- for (int32 i = 0; i < vertexCount; ++i) {
- vertices[i] = b2Mul(xf, poly->m_vertices[i]);
- }
- m_debugDraw->DrawSolidPolygon(vertices, vertexCount, color);
- }
- break;
- default:
- break;
- }
- }
- void b2World::DebugDraw() {
- if (m_debugDraw == nullptr) {
- return;
- }
- uint32 flags = m_debugDraw->GetFlags();
- if (flags & b2Draw::e_shapeBit) {
- for (b2Body* b = m_bodyList; b; b = b->GetNext()) {
- const b2Transform& xf = b->GetTransform();
- for (b2Fixture* f = b->GetFixtureList(); f; f = f->GetNext()) {
- if (b->GetType() == b2_dynamicBody && b->m_mass == 0.0f) {
- // Bad body
- DrawShape(f, xf, b2Color(1.0f, 0.0f, 0.0f));
- } else if (b->IsEnabled() == false) {
- DrawShape(f, xf, b2Color(0.5f, 0.5f, 0.3f));
- } else if (b->GetType() == b2_staticBody) {
- DrawShape(f, xf, b2Color(0.5f, 0.9f, 0.5f));
- } else if (b->GetType() == b2_kinematicBody) {
- DrawShape(f, xf, b2Color(0.5f, 0.5f, 0.9f));
- } else if (b->IsAwake() == false) {
- DrawShape(f, xf, b2Color(0.6f, 0.6f, 0.6f));
- } else {
- DrawShape(f, xf, b2Color(0.9f, 0.7f, 0.7f));
- }
- }
- }
- }
- if (flags & b2Draw::e_jointBit) {
- for (b2Joint* j = m_jointList; j; j = j->GetNext()) {
- j->Draw(m_debugDraw);
- }
- }
- if (flags & b2Draw::e_pairBit) {
- b2Color color(0.3f, 0.9f, 0.9f);
- for (b2Contact* c = m_contactManager.m_contactList; c; c = c->GetNext()) {
- b2Fixture* fixtureA = c->GetFixtureA();
- b2Fixture* fixtureB = c->GetFixtureB();
- int32 indexA = c->GetChildIndexA();
- int32 indexB = c->GetChildIndexB();
- b2Vec2 cA = fixtureA->GetAABB(indexA).GetCenter();
- b2Vec2 cB = fixtureB->GetAABB(indexB).GetCenter();
- m_debugDraw->DrawSegment(cA, cB, color);
- }
- }
- if (flags & b2Draw::e_aabbBit) {
- b2Color color(0.9f, 0.3f, 0.9f);
- b2BroadPhase* bp = &m_contactManager.m_broadPhase;
- for (b2Body* b = m_bodyList; b; b = b->GetNext()) {
- if (b->IsEnabled() == false) {
- continue;
- }
- for (b2Fixture* f = b->GetFixtureList(); f; f = f->GetNext()) {
- for (int32 i = 0; i < f->m_proxyCount; ++i) {
- b2FixtureProxy* proxy = f->m_proxies + i;
- b2AABB aabb = bp->GetFatAABB(proxy->proxyId);
- b2Vec2 vs[4];
- vs[0].Set(aabb.lowerBound.x, aabb.lowerBound.y);
- vs[1].Set(aabb.upperBound.x, aabb.lowerBound.y);
- vs[2].Set(aabb.upperBound.x, aabb.upperBound.y);
- vs[3].Set(aabb.lowerBound.x, aabb.upperBound.y);
- m_debugDraw->DrawPolygon(vs, 4, color);
- }
- }
- }
- }
- if (flags & b2Draw::e_centerOfMassBit) {
- for (b2Body* b = m_bodyList; b; b = b->GetNext()) {
- b2Transform xf = b->GetTransform();
- xf.p = b->GetWorldCenter();
- m_debugDraw->DrawTransform(xf);
- }
- }
- }
- int32 b2World::GetProxyCount() const {
- return m_contactManager.m_broadPhase.GetProxyCount();
- }
- int32 b2World::GetTreeHeight() const {
- return m_contactManager.m_broadPhase.GetTreeHeight();
- }
- int32 b2World::GetTreeBalance() const {
- return m_contactManager.m_broadPhase.GetTreeBalance();
- }
- float b2World::GetTreeQuality() const {
- return m_contactManager.m_broadPhase.GetTreeQuality();
- }
- void b2World::ShiftOrigin(const b2Vec2& newOrigin) {
- b2Assert(m_locked == false);
- if (m_locked) {
- return;
- }
- for (b2Body* b = m_bodyList; b; b = b->m_next) {
- b->m_xf.p -= newOrigin;
- b->m_sweep.c0 -= newOrigin;
- b->m_sweep.c -= newOrigin;
- }
- for (b2Joint* j = m_jointList; j; j = j->m_next) {
- j->ShiftOrigin(newOrigin);
- }
- m_contactManager.m_broadPhase.ShiftOrigin(newOrigin);
- }
- void b2World::Dump() {
- if (m_locked) {
- return;
- }
- b2OpenDump("box2d_dump.inl");
- b2Dump("b2Vec2 g(%.9g, %.9g);\n", m_gravity.x, m_gravity.y);
- b2Dump("m_world->SetGravity(g);\n");
- b2Dump("b2Body** bodies = (b2Body**)b2Alloc(%d * sizeof(b2Body*));\n", m_bodyCount);
- b2Dump("b2Joint** joints = (b2Joint**)b2Alloc(%d * sizeof(b2Joint*));\n", m_jointCount);
- int32 i = 0;
- for (b2Body* b = m_bodyList; b; b = b->m_next) {
- b->m_islandIndex = i;
- b->Dump();
- ++i;
- }
- i = 0;
- for (b2Joint* j = m_jointList; j; j = j->m_next) {
- j->m_index = i;
- ++i;
- }
- // First pass on joints, skip gear joints.
- for (b2Joint* j = m_jointList; j; j = j->m_next) {
- if (j->m_type == e_gearJoint) {
- continue;
- }
- b2Dump("{\n");
- j->Dump();
- b2Dump("}\n");
- }
- // Second pass on joints, only gear joints.
- for (b2Joint* j = m_jointList; j; j = j->m_next) {
- if (j->m_type != e_gearJoint) {
- continue;
- }
- b2Dump("{\n");
- j->Dump();
- b2Dump("}\n");
- }
- b2Dump("b2Free(joints);\n");
- b2Dump("b2Free(bodies);\n");
- b2Dump("joints = nullptr;\n");
- b2Dump("bodies = nullptr;\n");
- b2CloseDump();
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_fixture.h"
- //#include "box2d/b2_world_callbacks.h"
- // Return true if contact calculations should be performed between these two shapes.
- // If you implement your own collision filter you may want to build from this implementation.
- bool b2ContactFilter::ShouldCollide(b2Fixture* fixtureA, b2Fixture* fixtureB) {
- const b2Filter& filterA = fixtureA->GetFilterData();
- const b2Filter& filterB = fixtureB->GetFilterData();
- if (filterA.groupIndex == filterB.groupIndex && filterA.groupIndex != 0) {
- return filterA.groupIndex > 0;
- }
- bool collide = (filterA.maskBits & filterB.categoryBits) != 0 && (filterA.categoryBits & filterB.maskBits) != 0;
- return collide;
- }
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //#include "box2d/b2_draw.h"
- //#include "box2d/b2_rope.h"
- #include <stdio.h>
- struct b2RopeStretch {
- int32 i1, i2;
- float invMass1, invMass2;
- float L;
- float lambda;
- float spring;
- float damper;
- };
- struct b2RopeBend {
- int32 i1, i2, i3;
- float invMass1, invMass2, invMass3;
- float invEffectiveMass;
- float lambda;
- float L1, L2;
- float alpha1, alpha2;
- float spring;
- float damper;
- };
- b2Rope::b2Rope() {
- m_position.SetZero();
- m_count = 0;
- m_stretchCount = 0;
- m_bendCount = 0;
- m_stretchConstraints = nullptr;
- m_bendConstraints = nullptr;
- m_bindPositions = nullptr;
- m_ps = nullptr;
- m_p0s = nullptr;
- m_vs = nullptr;
- m_invMasses = nullptr;
- m_gravity.SetZero();
- }
- b2Rope::~b2Rope() {
- b2Free(m_stretchConstraints);
- b2Free(m_bendConstraints);
- b2Free(m_bindPositions);
- b2Free(m_ps);
- b2Free(m_p0s);
- b2Free(m_vs);
- b2Free(m_invMasses);
- }
- void b2Rope::Create(const b2RopeDef& def) {
- b2Assert(def.count >= 3);
- m_position = def.position;
- m_count = def.count;
- m_bindPositions = (b2Vec2*)b2Alloc(m_count * sizeof(b2Vec2));
- m_ps = (b2Vec2*)b2Alloc(m_count * sizeof(b2Vec2));
- m_p0s = (b2Vec2*)b2Alloc(m_count * sizeof(b2Vec2));
- m_vs = (b2Vec2*)b2Alloc(m_count * sizeof(b2Vec2));
- m_invMasses = (float*)b2Alloc(m_count * sizeof(float));
- for (int32 i = 0; i < m_count; ++i) {
- m_bindPositions[i] = def.vertices[i];
- m_ps[i] = def.vertices[i] + m_position;
- m_p0s[i] = def.vertices[i] + m_position;
- m_vs[i].SetZero();
- float m = def.masses[i];
- if (m > 0.0f) {
- m_invMasses[i] = 1.0f / m;
- } else {
- m_invMasses[i] = 0.0f;
- }
- }
- m_stretchCount = m_count - 1;
- m_bendCount = m_count - 2;
- m_stretchConstraints = (b2RopeStretch*)b2Alloc(m_stretchCount * sizeof(b2RopeStretch));
- m_bendConstraints = (b2RopeBend*)b2Alloc(m_bendCount * sizeof(b2RopeBend));
- for (int32 i = 0; i < m_stretchCount; ++i) {
- b2RopeStretch& c = m_stretchConstraints[i];
- b2Vec2 p1 = m_ps[i];
- b2Vec2 p2 = m_ps[i + 1];
- c.i1 = i;
- c.i2 = i + 1;
- c.L = b2Distance(p1, p2);
- c.invMass1 = m_invMasses[i];
- c.invMass2 = m_invMasses[i + 1];
- c.lambda = 0.0f;
- c.damper = 0.0f;
- c.spring = 0.0f;
- }
- for (int32 i = 0; i < m_bendCount; ++i) {
- b2RopeBend& c = m_bendConstraints[i];
- b2Vec2 p1 = m_ps[i];
- b2Vec2 p2 = m_ps[i + 1];
- b2Vec2 p3 = m_ps[i + 2];
- c.i1 = i;
- c.i2 = i + 1;
- c.i3 = i + 2;
- c.invMass1 = m_invMasses[i];
- c.invMass2 = m_invMasses[i + 1];
- c.invMass3 = m_invMasses[i + 2];
- c.invEffectiveMass = 0.0f;
- c.L1 = b2Distance(p1, p2);
- c.L2 = b2Distance(p2, p3);
- c.lambda = 0.0f;
- // Pre-compute effective mass (TODO use flattened config)
- b2Vec2 e1 = p2 - p1;
- b2Vec2 e2 = p3 - p2;
- float L1sqr = e1.LengthSquared();
- float L2sqr = e2.LengthSquared();
- if (L1sqr * L2sqr == 0.0f) {
- continue;
- }
- b2Vec2 Jd1 = (-1.0f / L1sqr) * e1.Skew();
- b2Vec2 Jd2 = (1.0f / L2sqr) * e2.Skew();
- b2Vec2 J1 = -Jd1;
- b2Vec2 J2 = Jd1 - Jd2;
- b2Vec2 J3 = Jd2;
- c.invEffectiveMass = c.invMass1 * b2Dot(J1, J1) + c.invMass2 * b2Dot(J2, J2) + c.invMass3 * b2Dot(J3, J3);
- b2Vec2 r = p3 - p1;
- float rr = r.LengthSquared();
- if (rr == 0.0f) {
- continue;
- }
- // a1 = h2 / (h1 + h2)
- // a2 = h1 / (h1 + h2)
- c.alpha1 = b2Dot(e2, r) / rr;
- c.alpha2 = b2Dot(e1, r) / rr;
- }
- m_gravity = def.gravity;
- SetTuning(def.tuning);
- }
- void b2Rope::SetTuning(const b2RopeTuning& tuning) {
- m_tuning = tuning;
- // Pre-compute spring and damper values based on tuning
- const float bendOmega = 2.0f * b2_pi * m_tuning.bendHertz;
- for (int32 i = 0; i < m_bendCount; ++i) {
- b2RopeBend& c = m_bendConstraints[i];
- float L1sqr = c.L1 * c.L1;
- float L2sqr = c.L2 * c.L2;
- if (L1sqr * L2sqr == 0.0f) {
- c.spring = 0.0f;
- c.damper = 0.0f;
- continue;
- }
- // Flatten the triangle formed by the two edges
- float J2 = 1.0f / c.L1 + 1.0f / c.L2;
- float sum = c.invMass1 / L1sqr + c.invMass2 * J2 * J2 + c.invMass3 / L2sqr;
- if (sum == 0.0f) {
- c.spring = 0.0f;
- c.damper = 0.0f;
- continue;
- }
- float mass = 1.0f / sum;
- c.spring = mass * bendOmega * bendOmega;
- c.damper = 2.0f * mass * m_tuning.bendDamping * bendOmega;
- }
- const float stretchOmega = 2.0f * b2_pi * m_tuning.stretchHertz;
- for (int32 i = 0; i < m_stretchCount; ++i) {
- b2RopeStretch& c = m_stretchConstraints[i];
- float sum = c.invMass1 + c.invMass2;
- if (sum == 0.0f) {
- continue;
- }
- float mass = 1.0f / sum;
- c.spring = mass * stretchOmega * stretchOmega;
- c.damper = 2.0f * mass * m_tuning.stretchDamping * stretchOmega;
- }
- }
- void b2Rope::Step(float dt, int32 iterations, const b2Vec2& position) {
- if (dt == 0.0) {
- return;
- }
- const float inv_dt = 1.0f / dt;
- float d = expf(-dt * m_tuning.damping);
- // Apply gravity and damping
- for (int32 i = 0; i < m_count; ++i) {
- if (m_invMasses[i] > 0.0f) {
- m_vs[i] *= d;
- m_vs[i] += dt * m_gravity;
- } else {
- m_vs[i] = inv_dt * (m_bindPositions[i] + position - m_p0s[i]);
- }
- }
- // Apply bending spring
- if (m_tuning.bendingModel == b2_springAngleBendingModel) {
- ApplyBendForces(dt);
- }
- for (int32 i = 0; i < m_bendCount; ++i) {
- m_bendConstraints[i].lambda = 0.0f;
- }
- for (int32 i = 0; i < m_stretchCount; ++i) {
- m_stretchConstraints[i].lambda = 0.0f;
- }
- // Update position
- for (int32 i = 0; i < m_count; ++i) {
- m_ps[i] += dt * m_vs[i];
- }
- // Solve constraints
- for (int32 i = 0; i < iterations; ++i) {
- if (m_tuning.bendingModel == b2_pbdAngleBendingModel) {
- SolveBend_PBD_Angle();
- } else if (m_tuning.bendingModel == b2_xpbdAngleBendingModel) {
- SolveBend_XPBD_Angle(dt);
- } else if (m_tuning.bendingModel == b2_pbdDistanceBendingModel) {
- SolveBend_PBD_Distance();
- } else if (m_tuning.bendingModel == b2_pbdHeightBendingModel) {
- SolveBend_PBD_Height();
- } else if (m_tuning.bendingModel == b2_pbdTriangleBendingModel) {
- SolveBend_PBD_Triangle();
- }
- if (m_tuning.stretchingModel == b2_pbdStretchingModel) {
- SolveStretch_PBD();
- } else if (m_tuning.stretchingModel == b2_xpbdStretchingModel) {
- SolveStretch_XPBD(dt);
- }
- }
- // Constrain velocity
- for (int32 i = 0; i < m_count; ++i) {
- m_vs[i] = inv_dt * (m_ps[i] - m_p0s[i]);
- m_p0s[i] = m_ps[i];
- }
- }
- void b2Rope::Reset(const b2Vec2& position) {
- m_position = position;
- for (int32 i = 0; i < m_count; ++i) {
- m_ps[i] = m_bindPositions[i] + m_position;
- m_p0s[i] = m_bindPositions[i] + m_position;
- m_vs[i].SetZero();
- }
- for (int32 i = 0; i < m_bendCount; ++i) {
- m_bendConstraints[i].lambda = 0.0f;
- }
- for (int32 i = 0; i < m_stretchCount; ++i) {
- m_stretchConstraints[i].lambda = 0.0f;
- }
- }
- void b2Rope::SolveStretch_PBD() {
- const float stiffness = m_tuning.stretchStiffness;
- for (int32 i = 0; i < m_stretchCount; ++i) {
- const b2RopeStretch& c = m_stretchConstraints[i];
- b2Vec2 p1 = m_ps[c.i1];
- b2Vec2 p2 = m_ps[c.i2];
- b2Vec2 d = p2 - p1;
- float L = d.Normalize();
- float sum = c.invMass1 + c.invMass2;
- if (sum == 0.0f) {
- continue;
- }
- float s1 = c.invMass1 / sum;
- float s2 = c.invMass2 / sum;
- p1 -= stiffness * s1 * (c.L - L) * d;
- p2 += stiffness * s2 * (c.L - L) * d;
- m_ps[c.i1] = p1;
- m_ps[c.i2] = p2;
- }
- }
- void b2Rope::SolveStretch_XPBD(float dt) {
- b2Assert(dt > 0.0f);
- for (int32 i = 0; i < m_stretchCount; ++i) {
- b2RopeStretch& c = m_stretchConstraints[i];
- b2Vec2 p1 = m_ps[c.i1];
- b2Vec2 p2 = m_ps[c.i2];
- b2Vec2 dp1 = p1 - m_p0s[c.i1];
- b2Vec2 dp2 = p2 - m_p0s[c.i2];
- b2Vec2 u = p2 - p1;
- float L = u.Normalize();
- b2Vec2 J1 = -u;
- b2Vec2 J2 = u;
- float sum = c.invMass1 + c.invMass2;
- if (sum == 0.0f) {
- continue;
- }
- const float alpha = 1.0f / (c.spring * dt * dt); // 1 / kg
- const float beta = dt * dt * c.damper; // kg * s
- const float sigma = alpha * beta / dt; // non-dimensional
- float C = L - c.L;
- // This is using the initial velocities
- float Cdot = b2Dot(J1, dp1) + b2Dot(J2, dp2);
- float B = C + alpha * c.lambda + sigma * Cdot;
- float sum2 = (1.0f + sigma) * sum + alpha;
- float impulse = -B / sum2;
- p1 += (c.invMass1 * impulse) * J1;
- p2 += (c.invMass2 * impulse) * J2;
- m_ps[c.i1] = p1;
- m_ps[c.i2] = p2;
- c.lambda += impulse;
- }
- }
- void b2Rope::SolveBend_PBD_Angle() {
- const float stiffness = m_tuning.bendStiffness;
- for (int32 i = 0; i < m_bendCount; ++i) {
- const b2RopeBend& c = m_bendConstraints[i];
- b2Vec2 p1 = m_ps[c.i1];
- b2Vec2 p2 = m_ps[c.i2];
- b2Vec2 p3 = m_ps[c.i3];
- b2Vec2 d1 = p2 - p1;
- b2Vec2 d2 = p3 - p2;
- float a = b2Cross(d1, d2);
- float b = b2Dot(d1, d2);
- float angle = b2Atan2(a, b);
- float L1sqr, L2sqr;
- if (m_tuning.isometric) {
- L1sqr = c.L1 * c.L1;
- L2sqr = c.L2 * c.L2;
- } else {
- L1sqr = d1.LengthSquared();
- L2sqr = d2.LengthSquared();
- }
- if (L1sqr * L2sqr == 0.0f) {
- continue;
- }
- b2Vec2 Jd1 = (-1.0f / L1sqr) * d1.Skew();
- b2Vec2 Jd2 = (1.0f / L2sqr) * d2.Skew();
- b2Vec2 J1 = -Jd1;
- b2Vec2 J2 = Jd1 - Jd2;
- b2Vec2 J3 = Jd2;
- float sum;
- if (m_tuning.fixedEffectiveMass) {
- sum = c.invEffectiveMass;
- } else {
- sum = c.invMass1 * b2Dot(J1, J1) + c.invMass2 * b2Dot(J2, J2) + c.invMass3 * b2Dot(J3, J3);
- }
- if (sum == 0.0f) {
- sum = c.invEffectiveMass;
- }
- float impulse = -stiffness * angle / sum;
- p1 += (c.invMass1 * impulse) * J1;
- p2 += (c.invMass2 * impulse) * J2;
- p3 += (c.invMass3 * impulse) * J3;
- m_ps[c.i1] = p1;
- m_ps[c.i2] = p2;
- m_ps[c.i3] = p3;
- }
- }
- void b2Rope::SolveBend_XPBD_Angle(float dt) {
- b2Assert(dt > 0.0f);
- for (int32 i = 0; i < m_bendCount; ++i) {
- b2RopeBend& c = m_bendConstraints[i];
- b2Vec2 p1 = m_ps[c.i1];
- b2Vec2 p2 = m_ps[c.i2];
- b2Vec2 p3 = m_ps[c.i3];
- b2Vec2 dp1 = p1 - m_p0s[c.i1];
- b2Vec2 dp2 = p2 - m_p0s[c.i2];
- b2Vec2 dp3 = p3 - m_p0s[c.i3];
- b2Vec2 d1 = p2 - p1;
- b2Vec2 d2 = p3 - p2;
- float L1sqr, L2sqr;
- if (m_tuning.isometric) {
- L1sqr = c.L1 * c.L1;
- L2sqr = c.L2 * c.L2;
- } else {
- L1sqr = d1.LengthSquared();
- L2sqr = d2.LengthSquared();
- }
- if (L1sqr * L2sqr == 0.0f) {
- continue;
- }
- float a = b2Cross(d1, d2);
- float b = b2Dot(d1, d2);
- float angle = b2Atan2(a, b);
- b2Vec2 Jd1 = (-1.0f / L1sqr) * d1.Skew();
- b2Vec2 Jd2 = (1.0f / L2sqr) * d2.Skew();
- b2Vec2 J1 = -Jd1;
- b2Vec2 J2 = Jd1 - Jd2;
- b2Vec2 J3 = Jd2;
- float sum;
- if (m_tuning.fixedEffectiveMass) {
- sum = c.invEffectiveMass;
- } else {
- sum = c.invMass1 * b2Dot(J1, J1) + c.invMass2 * b2Dot(J2, J2) + c.invMass3 * b2Dot(J3, J3);
- }
- if (sum == 0.0f) {
- continue;
- }
- const float alpha = 1.0f / (c.spring * dt * dt);
- const float beta = dt * dt * c.damper;
- const float sigma = alpha * beta / dt;
- float C = angle;
- // This is using the initial velocities
- float Cdot = b2Dot(J1, dp1) + b2Dot(J2, dp2) + b2Dot(J3, dp3);
- float B = C + alpha * c.lambda + sigma * Cdot;
- float sum2 = (1.0f + sigma) * sum + alpha;
- float impulse = -B / sum2;
- p1 += (c.invMass1 * impulse) * J1;
- p2 += (c.invMass2 * impulse) * J2;
- p3 += (c.invMass3 * impulse) * J3;
- m_ps[c.i1] = p1;
- m_ps[c.i2] = p2;
- m_ps[c.i3] = p3;
- c.lambda += impulse;
- }
- }
- void b2Rope::ApplyBendForces(float dt) {
- // omega = 2 * pi * hz
- const float omega = 2.0f * b2_pi * m_tuning.bendHertz;
- for (int32 i = 0; i < m_bendCount; ++i) {
- const b2RopeBend& c = m_bendConstraints[i];
- b2Vec2 p1 = m_ps[c.i1];
- b2Vec2 p2 = m_ps[c.i2];
- b2Vec2 p3 = m_ps[c.i3];
- b2Vec2 v1 = m_vs[c.i1];
- b2Vec2 v2 = m_vs[c.i2];
- b2Vec2 v3 = m_vs[c.i3];
- b2Vec2 d1 = p2 - p1;
- b2Vec2 d2 = p3 - p2;
- float L1sqr, L2sqr;
- if (m_tuning.isometric) {
- L1sqr = c.L1 * c.L1;
- L2sqr = c.L2 * c.L2;
- } else {
- L1sqr = d1.LengthSquared();
- L2sqr = d2.LengthSquared();
- }
- if (L1sqr * L2sqr == 0.0f) {
- continue;
- }
- float a = b2Cross(d1, d2);
- float b = b2Dot(d1, d2);
- float angle = b2Atan2(a, b);
- b2Vec2 Jd1 = (-1.0f / L1sqr) * d1.Skew();
- b2Vec2 Jd2 = (1.0f / L2sqr) * d2.Skew();
- b2Vec2 J1 = -Jd1;
- b2Vec2 J2 = Jd1 - Jd2;
- b2Vec2 J3 = Jd2;
- float sum;
- if (m_tuning.fixedEffectiveMass) {
- sum = c.invEffectiveMass;
- } else {
- sum = c.invMass1 * b2Dot(J1, J1) + c.invMass2 * b2Dot(J2, J2) + c.invMass3 * b2Dot(J3, J3);
- }
- if (sum == 0.0f) {
- continue;
- }
- float mass = 1.0f / sum;
- const float spring = mass * omega * omega;
- const float damper = 2.0f * mass * m_tuning.bendDamping * omega;
- float C = angle;
- float Cdot = b2Dot(J1, v1) + b2Dot(J2, v2) + b2Dot(J3, v3);
- float impulse = -dt * (spring * C + damper * Cdot);
- m_vs[c.i1] += (c.invMass1 * impulse) * J1;
- m_vs[c.i2] += (c.invMass2 * impulse) * J2;
- m_vs[c.i3] += (c.invMass3 * impulse) * J3;
- }
- }
- void b2Rope::SolveBend_PBD_Distance() {
- const float stiffness = m_tuning.bendStiffness;
- for (int32 i = 0; i < m_bendCount; ++i) {
- const b2RopeBend& c = m_bendConstraints[i];
- int32 i1 = c.i1;
- int32 i2 = c.i3;
- b2Vec2 p1 = m_ps[i1];
- b2Vec2 p2 = m_ps[i2];
- b2Vec2 d = p2 - p1;
- float L = d.Normalize();
- float sum = c.invMass1 + c.invMass3;
- if (sum == 0.0f) {
- continue;
- }
- float s1 = c.invMass1 / sum;
- float s2 = c.invMass3 / sum;
- p1 -= stiffness * s1 * (c.L1 + c.L2 - L) * d;
- p2 += stiffness * s2 * (c.L1 + c.L2 - L) * d;
- m_ps[i1] = p1;
- m_ps[i2] = p2;
- }
- }
- // Constraint based implementation of:
- // P. Volino: Simple Linear Bending Stiffness in Particle Systems
- void b2Rope::SolveBend_PBD_Height() {
- const float stiffness = m_tuning.bendStiffness;
- for (int32 i = 0; i < m_bendCount; ++i) {
- const b2RopeBend& c = m_bendConstraints[i];
- b2Vec2 p1 = m_ps[c.i1];
- b2Vec2 p2 = m_ps[c.i2];
- b2Vec2 p3 = m_ps[c.i3];
- // Barycentric coordinates are held constant
- b2Vec2 d = c.alpha1 * p1 + c.alpha2 * p3 - p2;
- float dLen = d.Length();
- if (dLen == 0.0f) {
- continue;
- }
- b2Vec2 dHat = (1.0f / dLen) * d;
- b2Vec2 J1 = c.alpha1 * dHat;
- b2Vec2 J2 = -dHat;
- b2Vec2 J3 = c.alpha2 * dHat;
- float sum = c.invMass1 * c.alpha1 * c.alpha1 + c.invMass2 + c.invMass3 * c.alpha2 * c.alpha2;
- if (sum == 0.0f) {
- continue;
- }
- float C = dLen;
- float mass = 1.0f / sum;
- float impulse = -stiffness * mass * C;
- p1 += (c.invMass1 * impulse) * J1;
- p2 += (c.invMass2 * impulse) * J2;
- p3 += (c.invMass3 * impulse) * J3;
- m_ps[c.i1] = p1;
- m_ps[c.i2] = p2;
- m_ps[c.i3] = p3;
- }
- }
- // M. Kelager: A Triangle Bending Constraint Model for PBD
- void b2Rope::SolveBend_PBD_Triangle() {
- const float stiffness = m_tuning.bendStiffness;
- for (int32 i = 0; i < m_bendCount; ++i) {
- const b2RopeBend& c = m_bendConstraints[i];
- b2Vec2 b0 = m_ps[c.i1];
- b2Vec2 v = m_ps[c.i2];
- b2Vec2 b1 = m_ps[c.i3];
- float wb0 = c.invMass1;
- float wv = c.invMass2;
- float wb1 = c.invMass3;
- float W = wb0 + wb1 + 2.0f * wv;
- float invW = stiffness / W;
- b2Vec2 d = v - (1.0f / 3.0f) * (b0 + v + b1);
- b2Vec2 db0 = 2.0f * wb0 * invW * d;
- b2Vec2 dv = -4.0f * wv * invW * d;
- b2Vec2 db1 = 2.0f * wb1 * invW * d;
- b0 += db0;
- v += dv;
- b1 += db1;
- m_ps[c.i1] = b0;
- m_ps[c.i2] = v;
- m_ps[c.i3] = b1;
- }
- }
- void b2Rope::Draw(b2Draw* draw) const {
- b2Color c(0.4f, 0.5f, 0.7f);
- b2Color pg(0.1f, 0.8f, 0.1f);
- b2Color pd(0.7f, 0.2f, 0.4f);
- for (int32 i = 0; i < m_count - 1; ++i) {
- draw->DrawSegment(m_ps[i], m_ps[i + 1], c);
- const b2Color& pc = m_invMasses[i] > 0.0f ? pd : pg;
- draw->DrawPoint(m_ps[i], 5.0f, pc);
- }
- const b2Color& pc = m_invMasses[m_count - 1] > 0.0f ? pd : pg;
- draw->DrawPoint(m_ps[m_count - 1], 5.0f, pc);
- }
- #endif
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement