Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- from keras.datasets import fashion_mnist
- from keras.layers import Dense
- from keras.models import Sequential
- from tensorflow.keras.optimizers import Adam
- import numpy as np
- optimizer = Adam(lr=0.01)
- def load_train(path):
- features_train = np.load(path + 'train_features.npy')
- target_train = np.load(path + 'train_target.npy')
- features_train = features_train.reshape(features_train.shape[0], 28 * 28) / 255.
- return features_train, target_train
- def create_model(input_shape): #Winer
- model = Sequential()
- model.add(Dense(100, input_shape=input_shape, activation="relu"))
- model.add(Dense(10, activation="softmax"))
- model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy',
- metrics=['acc'])
- return model
- def train_model(model, train_data, test_data, batch_size=32, epochs=10,
- steps_per_epoch=None, validation_steps=None):
- features_train, target_train = train_data
- features_test, target_test = test_data
- model.fit(features_train, target_train,
- validation_data=(features_test, target_test),
- batch_size=batch_size, epochs=epochs,
- steps_per_epoch=steps_per_epoch,
- validation_steps=validation_steps,
- verbose=2, shuffle=True)
- return model
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement