Advertisement
phystota

unrolling_final_optimized

Nov 5th, 2024
48
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
C++ 9.48 KB | None | 0 0
  1. #include <cmath>
  2. #include <iostream>
  3. #include "gpu-new-forward.h"
  4.  
  5. #define TILE_WIDTH 16
  6. #define BLOCK_SIZE 512
  7.  
  8. __global__ void matrix_unrolling_kernel(const float *input, float *output,
  9.                                         const int Batch, const int Channel,
  10.                                         const int Height, const int Width,
  11.                                         const int K) {
  12.  
  13.     #define in_4d(i3, i2, i1, i0) input[(i3) * (Channel * Height * Width) + (i2) * (Height * Width) + (i1) * (Width) + i0]
  14.     #define out_3d(i1, i0) output[(i1) * (Batch * W_unroll) + i0]
  15.  
  16.     const int Height_out = Height - K + 1;
  17.     const int Width_out = Width - K + 1;
  18.     size_t W_unroll = Height_out * Width_out;
  19.     size_t W_total_unroll = Batch * W_unroll;
  20.  
  21.     // Get thread index
  22.     const int c = blockIdx.x * blockDim.x + threadIdx.x;    // Channel
  23.     const int hw = blockIdx.y * blockDim.y + threadIdx.y;   // Height-width combined
  24.     const int b = blockIdx.z * blockDim.z + threadIdx.z;    // Batch
  25.    
  26.     // Extract height and width
  27.     const int h_out = hw / Width_out;
  28.     const int w_out = hw % Width_out;
  29.  
  30.     // Boundary check
  31.     if (c >= Channel || hw >= (Height_out * Width_out) || b >= Batch) {
  32.         return;
  33.     }
  34.  
  35.     // Calculate output indices
  36.     const int w_unroll_idx = h_out * Width_out + w_out;
  37.     const int w_total_unroll = b * W_unroll + w_unroll_idx;
  38.     const int w_base = c * K * K;
  39.  
  40.     // Process K×K window
  41.     for (int p = 0; p < K; p++) {
  42.         for (int q = 0; q < K; q++) {
  43.             const int h_unroll = w_base + p * K + q;
  44.             const float val = in_4d(b, c, h_out + p, w_out + q);
  45.             out_3d(h_unroll, w_total_unroll) = val;
  46.         }
  47.     }
  48.  
  49.     #undef in_4d
  50.     #undef out_3d
  51. }
  52.  
  53. // Tiled matrix multiplication kernel. Computes C = AB
  54. // You don't need to modify this kernel.
  55. __global__ void matrixMultiplyShared(const float *A, const float *B, float *C,
  56.                                      int numARows, int numAColumns,
  57.                                      int numBRows, int numBColumns,
  58.                                      int numCRows, int numCColumns)
  59. {
  60.     __shared__ float tileA[TILE_WIDTH][TILE_WIDTH];
  61.     __shared__ float tileB[TILE_WIDTH][TILE_WIDTH];
  62.  
  63.     int by = blockIdx.y, bx = blockIdx.x, ty = threadIdx.y, tx = threadIdx.x;
  64.  
  65.     int row = by * TILE_WIDTH + ty, col = bx * TILE_WIDTH + tx;
  66.     float val = 0;
  67.  
  68.     for (int tileId = 0; tileId < (numAColumns - 1) / TILE_WIDTH + 1; tileId++) {
  69.         if (row < numARows && tileId * TILE_WIDTH + tx < numAColumns) {
  70.             tileA[ty][tx] = A[(size_t) row * numAColumns + tileId * TILE_WIDTH + tx];
  71.         } else {
  72.             tileA[ty][tx] = 0;
  73.         }
  74.         if (col < numBColumns && tileId * TILE_WIDTH + ty < numBRows) {
  75.             tileB[ty][tx] = B[((size_t) tileId * TILE_WIDTH + ty) * numBColumns + col];
  76.         } else {
  77.             tileB[ty][tx] = 0;
  78.         }
  79.         __syncthreads();
  80.  
  81.         if (row < numCRows && col < numCColumns) {
  82.             for (int i = 0; i < TILE_WIDTH; i++) {
  83.                 val += tileA[ty][i] * tileB[i][tx];
  84.             }
  85.         }
  86.         __syncthreads();
  87.     }
  88.  
  89.     if (row < numCRows && col < numCColumns) {
  90.         C[row * numCColumns + col] = val;
  91.     }
  92. }
  93.  
  94. // Permutes the matmul result.
  95. // The output feature map after matmul is of shape Map_out x Batch x Height_out x Width_out,
  96. // and we need to permute it into Batch x Map_out x Height_out x Width_out.
  97. // You don't need to modify this kernel.
  98. __global__ void matrix_permute_kernel(const float *input, float *output, int Map_out,
  99.                                       int Batch, int image_size) {
  100.     int b = blockIdx.y;
  101.     int x = blockIdx.x * BLOCK_SIZE + threadIdx.x;
  102.     if (x < image_size) {
  103.         for (int m = 0; m < Map_out; m++) {
  104.             output[b * Map_out * image_size + m * image_size + x] =
  105.                     input[m * Batch * image_size + b * image_size + x];
  106.         }
  107.     }
  108. }
  109.  
  110. __host__ void GPUInterface::conv_forward_gpu_prolog(const float *host_output, const float *host_input, const float *host_mask, float **device_output_ptr, float **device_input_ptr, float **device_mask_ptr, const int Batch, const int Map_out, const int Channel, const int Height, const int Width, const int K)
  111. {
  112.     // TODO: Allocate memory and copy over the relevant data structures to the GPU
  113.  
  114.     // We pass double pointers for you to initialize the relevant device pointers,
  115.     //  which are passed to the other two functions.
  116.  
  117.     // Useful snippet for error checking
  118.     // cudaError_t error = cudaGetLastError();
  119.     // if(error != cudaSuccess)
  120.     // {
  121.     //     std::cout<<"CUDA error: "<<cudaGetErrorString(error)<<std::endl;
  122.     //     exit(-1);
  123.     // }
  124.  
  125.     //  allocating memory
  126.  
  127.     // Calculate sizes
  128.     const int Height_out = Height - K + 1;
  129.     const int Width_out = Width - K + 1;
  130.    
  131.     const int input_size = Batch * Channel * Height * Width * sizeof(float);
  132.     const int mask_size = Map_out * Channel * K * K * sizeof(float);
  133.     const int output_size = Batch * Map_out * Height_out * Width_out * sizeof(float);
  134.  
  135.     cudaMalloc((void**)device_input_ptr, input_size);
  136.     cudaMalloc((void**)device_mask_ptr, mask_size);
  137.     cudaMalloc((void**)device_output_ptr, output_size);
  138.  
  139.     cudaMemcpy(*device_input_ptr, host_input, input_size, cudaMemcpyHostToDevice);
  140.     cudaMemcpy(*device_mask_ptr, host_mask, mask_size, cudaMemcpyHostToDevice);
  141.  
  142. }
  143.  
  144.  
  145. __host__ void GPUInterface::conv_forward_gpu(float *device_output, const float *device_input, const float *device_mask, const int Batch, const int Map_out, const int Channel, const int Height, const int Width, const int K)
  146. {
  147.     const int Height_out = Height - K + 1;
  148.     const int Width_out = Width - K + 1;
  149.     const int Height_unrolled = Channel * K * K;
  150.     const int Width_unrolled = Batch * Height_out * Width_out;
  151.  
  152.     //allocating temping storage of unrolling matrix
  153.     float *unrolled_matrix;  // Pointer to device memory for storing the unrolled matrix
  154.     float *matmul_output;    // Pointer to device memory for storing the result of matrix multiplication
  155.     cudaMalloc((void**)&unrolled_matrix, (size_t) Batch * Channel * K * K * Height_out * Width_out * sizeof(float));
  156.     cudaMalloc((void**)&matmul_output, (Batch * Map_out * Height_out * Width_out) * sizeof(float));
  157.  
  158.     // TODO: Set the kernel dimensions and call the matrix unrolling kernel.
  159.     // dim3 gridDim((Channel * Width_unrolled + BLOCK_SIZE - 1) / BLOCK_SIZE, Batch, 1);
  160.     dim3 blockDim(32, 16, 2);
  161.     const int HW = Height_out * Width_out;
  162.     // Grid dimensions
  163.     dim3 gridDim(
  164.         (Channel + blockDim.x - 1) / blockDim.x,
  165.         (HW + blockDim.y - 1) / blockDim.y,
  166.         (Batch + blockDim.z - 1) / blockDim.z
  167.     );
  168.     matrix_unrolling_kernel<<<gridDim, blockDim>>>(device_input, unrolled_matrix, Batch, Channel, Height, Width, K);
  169.  
  170.     // TODO: Set the kernel dimensions and call the matmul kernel
  171.     dim3 dimGrid((Width_unrolled - 1)/TILE_WIDTH + 1, (Map_out - 1)/TILE_WIDTH + 1, 1);
  172.     dim3 dimBlock(TILE_WIDTH, TILE_WIDTH, 1);
  173.     matrixMultiplyShared<<<dimGrid, dimBlock>>>(device_mask, unrolled_matrix, matmul_output, Map_out, Height_unrolled, Height_unrolled, Width_unrolled,
  174.     Map_out, Width_unrolled);
  175.  
  176.     // Permute the result of matrix multiplication
  177.     const int out_image_size = Height_out * Width_out;
  178.     dim3 permute_kernel_grid_dim((out_image_size - 1) / BLOCK_SIZE + 1, Batch, 1);
  179.     matrix_permute_kernel<<<permute_kernel_grid_dim, BLOCK_SIZE>>>(matmul_output, device_output, Map_out, Batch, out_image_size);
  180.  
  181.     cudaFree(matmul_output);
  182.     cudaFree(unrolled_matrix);
  183. }
  184.  
  185.  
  186. __host__ void GPUInterface::conv_forward_gpu_epilog(float *host_output, float *device_output, float *device_input, float *device_mask, const int Batch, const int Map_out, const int Channel, const int Height, const int Width, const int K)
  187. {
  188.  
  189.     // Calculate output size
  190.     const int Height_out = Height - K + 1;
  191.     const int Width_out = Width - K + 1;
  192.     const int output_size = Batch * Map_out * Height_out * Width_out * sizeof(float);
  193.  
  194.     // TODO: Copy the output back to host
  195.     cudaMemcpy(host_output, device_output, output_size, cudaMemcpyDeviceToHost);
  196.  
  197.     // TODO: Free device memory
  198.     cudaFree(device_output);
  199.     cudaFree(device_input);
  200.     cudaFree(device_mask);
  201. }
  202.  
  203.  
  204. __host__ void GPUInterface::get_device_properties()
  205. {
  206.     int deviceCount;
  207.     cudaGetDeviceCount(&deviceCount);
  208.  
  209.     for(int dev = 0; dev < deviceCount; dev++)
  210.     {
  211.         cudaDeviceProp deviceProp;
  212.         cudaGetDeviceProperties(&deviceProp, dev);
  213.  
  214.         std::cout<<"Device "<<dev<<" name: "<<deviceProp.name<<std::endl;
  215.         std::cout<<"Computational capabilities: "<<deviceProp.major<<"."<<deviceProp.minor<<std::endl;
  216.         std::cout<<"Max Global memory size: "<<deviceProp.totalGlobalMem<<std::endl;
  217.         std::cout<<"Max Constant memory size: "<<deviceProp.totalConstMem<<std::endl;
  218.         std::cout<<"Max Shared memory size per block: "<<deviceProp.sharedMemPerBlock<<std::endl;
  219.         std::cout<<"Max threads per block: "<<deviceProp.maxThreadsPerBlock<<std::endl;
  220.         std::cout<<"Max block dimensions: "<<deviceProp.maxThreadsDim[0]<<" x, "<<deviceProp.maxThreadsDim[1]<<" y, "<<deviceProp.maxThreadsDim[2]<<" z"<<std::endl;
  221.         std::cout<<"Max grid dimensions: "<<deviceProp.maxGridSize[0]<<" x, "<<deviceProp.maxGridSize[1]<<" y, "<<deviceProp.maxGridSize[2]<<" z"<<std::endl;
  222.         std::cout<<"Warp Size: "<<deviceProp.warpSize<<std::endl;
  223.     }
  224. }
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement