Advertisement
caasinehc

URI CSC 340 F22 HW1 Q7

Sep 18th, 2022
19
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 0.53 KB | None | 0 0
  1. Base case:
  2. 1/(1 * 2) = 1/(1 + 1) ⇔ 1 = 1 ⇔ true
  3.  
  4. Inductive hypothesis: 1/(1 * 2) + 1/(2 * 3) + ... + 1/(n * (n + 1)) = n/(n + 1) ⇒ 1/(1 * 2) + 1/(2 * 3) + ... + 1/(n * (n + 1)) + 1/((n + 1) * (n + 2)) = (n + 1)/(n + 2)
  5. ⇔ n/(n + 1) + 1/((n + 1) * (n + 2)) = (n + 1)/(n + 2)
  6. (n = -2 is outside the domain of our problem)
  7. ⇔ (n² + 2n)/(n + 1) + 1/(n + 1) = (n + 1)
  8. ⇔ (n² + 2n) + 1 = (n + 1)²
  9. ⇔ n² + 2n + 1 = n² + 2n + 1
  10. ⇔ 1 = 1
  11. ⇔ true
  12.  
  13. ∴ 1/(1 * 2) + 1/(2 * 3) + ... + 1/(n * (n + 1)) = n/(n + 1) ∀n ≥ 1
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement