Advertisement
banovski

Project Euler, Problem #8, Haskell

Dec 24th, 2021 (edited)
1,351
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. -- The four adjacent digits in the 1000-digit number
  2. -- 731671765313306249192251196744265747423553491949349698352031277450632623957831
  3. -- 801698480186947885184385861560789112949495459501737958331952853208805511125406
  4. -- 987471585238630507156932909632952274430435576689664895044524452316173185640309
  5. -- 871112172238311362229893423380308135336276614282806444486645238749303589072962
  6. -- 904915604407723907138105158593079608667017242712188399879790879227492190169972
  7. -- 088809377665727333001053367881220235421809751254540594752243525849077116705560
  8. -- 136048395864467063244157221553975369781797784617406495514929086256932197846862
  9. -- 248283972241375657056057490261407972968652414535100474821663704844031998900088
  10. -- 952434506585412275886668811642717147992444292823086346567481391912316282458617
  11. -- 866458359124566529476545682848912883142607690042242190226710556263211111093705
  12. -- 442175069416589604080719840385096245544436298123098787992724428490918884580156
  13. -- 166097919133875499200524063689912560717606058861164671094050775410022569831552
  14. -- 0005593572972571636269561882670428252483600823257530420752963450
  15. -- that have the greatest product are 9 × 9 × 8 × 9 = 5832. Find the
  16. -- thirteen adjacent digits in the 1000-digitnumber that have the
  17. -- greatest product. What is the value of this product?
  18.  
  19. -- The input value shouldn't be formatted like this, but if it's not split into
  20. -- lines, Pastebin aparently deems the code dangerous.
  21. inputValue =
  22.   73167176531330624919225119674426574742355349194934969835203127745063262395783180
  23.   16984801869478851843858615607891129494954595017379583319528532088055111254069874
  24.   71585238630507156932909632952274430435576689664895044524452316173185640309871112
  25.   17223831136222989342338030813533627661428280644448664523874930358907296290491560
  26.   44077239071381051585930796086670172427121883998797908792274921901699720888093776
  27.   65727333001053367881220235421809751254540594752243525849077116705560136048395864
  28.   46706324415722155397536978179778461740649551492908625693219784686224828397224137
  29.   56570560574902614079729686524145351004748216637048440319989000889524345065854122
  30.   75886668811642717147992444292823086346567481391912316282458617866458359124566529
  31.   47654568284891288314260769004224219022671055626321111109370544217506941658960408
  32.   07198403850962455444362981230987879927244284909188845801561660979191338754992005
  33.   24063689912560717606058861164671094050775410022569831552000559357297257163626956
  34.   1882670428252483600823257530420752963450
  35.  
  36. numberToDigits :: Integral t => t -> [t]
  37. numberToDigits 0 = []
  38. numberToDigits x = numberToDigits (div x 10) ++ [mod x 10]
  39.  
  40. products :: Num a => [a] -> [a]
  41. products (x:xs) =
  42.   if length (x : xs) >= 13
  43.     then product (x : take 12 xs) : products xs
  44.     else [1]
  45.  
  46. maximumValue :: Integer
  47. maximumValue = maximum $ products $ numberToDigits inputValue
  48.  
  49. productsCheck :: [Integer] -> [Integer]
  50. productsCheck (x:xs) =
  51.   if product (x : take 12 xs) == maximumValue
  52.     then x : take 12 xs
  53.     else productsCheck xs
  54.  
  55. listToNumber :: Num a => [a] -> a
  56. listToNumber xs = sum [x * 10 ^ y | (x, y) <- reverse $ zip (reverse xs) [0 ..]]
  57.  
  58. main :: IO ()
  59. main =
  60.   print (maximumValue, listToNumber $ productsCheck $ numberToDigits inputValue)
  61.  
  62. -- (23514624000,5576689664895)
  63.  
  64. -- real 0m0,036s
  65. -- user 0m0,036s
  66. -- sys  0m0,000s
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement