Advertisement
pseudocreator

Latex finalna- # ispitna verzija

May 13th, 2014
429
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 5.45 KB | None | 0 0
  1. %zavrsna verzija LateXa za seminarski;
  2. %13.5.w014;
  3.  
  4. %LateX/ Tool. Tex.Editor
  5.  
  6. \documentclass[11pt]{article}
  7. \usepackage[utf8]{inputenc}
  8.  
  9.  
  10.  
  11. \usepackage{geometry}
  12. \geometry{a4paper}
  13.  
  14. \usepackage{graphicx}
  15. \usepackage[parfill]{parskip}
  16.  
  17.  
  18. \usepackage{booktabs}
  19. \usepackage{array}
  20. \usepackage{paralist}
  21. \usepackage{verbatim}
  22. \usepackage{subfig}
  23. \usepackage{amsfonts}
  24. \usepackage{amsmath}
  25. \usepackage{amsmath}
  26. \usepackage{amssymb}
  27.  
  28.  
  29. \usepackage{fancyhdr}
  30. \pagestyle{fancy}
  31. \renewcommand{\headrulewidth}{0pt}
  32. \lhead{}\chead{}\rhead{}
  33. \lfoot{}\cfoot{\thepage}\rfoot{}
  34.  
  35.  
  36. \usepackage{sectsty}
  37. \allsectionsfont{\sffamily\mdseries\upshape}
  38. \geometry{margin=1.5in}
  39.  
  40. \usepackage[nottoc,notlof,notlot]{tocbibind}
  41. \usepackage[titles,subfigure]{tocloft}
  42. \renewcommand{\cftsecfont}{\rmfamily\mdseries\upshape}
  43. \renewcommand{\cftsecpagefont}{\rmfamily\mdseries\upshape}
  44.  
  45. \title{Analiticka geometrija \textbf{ispitni zadatak}}
  46. \author{Lazar Savic(dobio-ukrao savete-pomoc oko uvoznih listi) }
  47.  
  48.  
  49. \begin{document}
  50. \pagestyle{empty}
  51. the coset space. For any measurable subset $E\subset G/H$ , we may easily choose
  52. a measurable function $\delta_E:G\to\mathbb{C}$ so that
  53. %formula 1, viticasta x[zavrseno]
  54. \begin{equation}
  55. \nonumber
  56. \delta_E(g)=\delta_E^H(gH) = \left\{
  57. \begin{array}{l l}
  58. 1 & \quad \text{if $gH\in E$,}\\
  59. 0 & \quad \text{if $gH\notin E$.}
  60. \end{array} \right.
  61. \end{equation}
  62. We may then define an $H$–invariant quotient measure $\tilde{\mu}$ satisfying:
  63. %formula2, integral x[zavrseno]
  64. \begin{equation}
  65. \nonumber
  66. \tilde{\mu}=\int_G \delta_E(g)d\mu(g) = \int_{G/H} \delta_E^H(gH)d\tilde{\mu}(gH),
  67. \end{equation}
  68. and
  69. %formula3, integral x[zavrseno]
  70. \begin{equation}
  71. \nonumber
  72. \int_Gf(g)d\mu(g)=\int_{G/H}f^H(gH)d\tilde{\mu}(gH),
  73. \end{equation}
  74. for all integrable functions $f:G\to\mathbb{C}$. \hfill $\square$
  75.  
  76. \textbf{Remarks} There is an analogous version of Theorem 1.5.1 for left coset spaces $H\backslash G$. Note that we are not assuming that $H$ is a normal subgroup of $G$. Thus $G/H$ (respectively $H\backslash G$) may not be a group.
  77.  
  78. \textbf{Example 1.5.2} (\textbf{Left invariant measure on} $GL(n,\mathbb{R})/(O(n,\mathbb{R})\cdot \mathbb{R}^x)$)
  79.  
  80. For $n\geq 2$, we now explicitly construct a left invariant measure on the generalized upper half-plane $\mathfrak{h}^n=GL(n,\mathbb{R})/(O(n,\mathbb{R})\cdot \mathbb{R}^x)$.Returning to the Iwasawa decomposition (Proposition 1.2.6), every $z\in\mathfrak{h}^n$ has a representation in the form $z = xy$ with
  81. %formula4, teska, pmatrix x[zavrseno]
  82. \begin{equation}
  83. \nonumber
  84. z = \begin{pmatrix}
  85. 1 & x_{1,2} & x_{1,3} & \cdots & & x_{1,n}\\
  86. & 1 & x_{2,3}& \cdots & & x_{2,n}\\
  87. & & & \ddots && \vdots\\
  88. &&&&1&x_{n-1,n}\\
  89. &&&&&1
  90. \end{pmatrix},
  91. y=\begin{pmatrix}
  92. y_1y_2\cdots y_{n-1}&&&&\\
  93. &y_2y_3\cdots y_{n-2}&&&\\
  94. &&\ddots&&\\
  95. &&& n &\\
  96. &&&&1
  97. \end{pmatrix},
  98. \end{equation}
  99. with $x_{i,j}\in\mathbb{R}$ for $1\leq i\leq j\leq n$ and $y_i>0$ $1\leq i\leq n$. Let $d^*z$ denote the left invariant measure on $\mathfrak{h}^n$. Then $d^*z$ has the property that
  100. %formula 5, kratka x[zavrseno]
  101. \begin{equation}
  102. \nonumber
  103. d^*(gz)=d^*z
  104. \end{equation}
  105. for all $g\in GL(n,\mathbb{R}).$
  106.  
  107. \textbf{Proposition 1.5.3} \emph{The left invariant $GL(n,\mathbb{r})-$measure $d^*z$ on $\mathfrak{h}^n$ can be given explicitly by the formula \[d^z=d^*xd^*y\] where
  108. %formula 6, Perioda nad, ispod x[zavrseno]
  109. \[d^*x = \prod_{1\leq i\leq j\leq n}dx_{i,j}, \>\>\> d^*y = \prod_{k=1}^{n-1}y_k^{-k(n-k)-1}dy_k. \tag{1.5.4}\]}
  110.  
  111. For example, for $n=2$, with $z = \begin{pmatrix}
  112. y & x\\
  113. 0 & 1
  114. \end{pmatrix}$,we have $d^*z = \frac{dxdy}{y^2}$ while for $n=3$ with
  115. %formula 7, 3*3 pmatrica x[zavrseno]
  116. \begin{equation}
  117. \nonumber
  118. z= \begin{pmatrix}
  119. y_1y_2 & x_{1,2} y_1 & x_{1,3}\\
  120. 0 & y_1 & x_{2,3}\\
  121. 0&0&1
  122. \end{pmatrix},
  123. \end{equation}
  124. we have
  125. %formula 8, d*z x[zavrseno]
  126. \begin{equation}
  127. \nonumber
  128. d^*z = dx_{1,2}dx_{1,3}dx_{2,3}\frac{dy_1dy_2}{(y_1y_2)^3}.
  129. \end{equation}
  130. \emph{Proof} We sketch the proof. The group $GL(n,\mathbb{R})$ is generated by diagonal matrices, upper triangular matrices with 1s on the diagonal, and the Weyl group $W_n$ which consists of all $n\times n$ matrices with exactly one 1 in each row and column and zeros everywhere else. For example,
  131. %poravnaj W2 W3; x[zavrseno]
  132. \begin{align*}
  133. W_2 &= \left\lbrace \begin{pmatrix}1 & 0\\0 & 1\end{pmatrix}, \begin{pmatrix}0&1\\1&0\end{pmatrix} \right\rbrace,\\
  134. W_3 & = \left\lbrace \begin{pmatrix}
  135. 1&0&0\\
  136. 0&1&0\\
  137. 0&0&1
  138. \end{pmatrix}, \begin{pmatrix}
  139. 1&0&0\\
  140. 0&0&1\\
  141. 0&0&1
  142. \end{pmatrix}, \begin{pmatrix}
  143. 0&1&0\\
  144. 1&0&0\\
  145. 0&0&1
  146. \end{pmatrix}, \right.\\
  147. &\>\>\>\>\>\>\>\>\>\>\left. \begin{pmatrix}
  148. 0&1&0\\
  149. 0&0&1\\
  150. 1&0&0
  151. \end{pmatrix},\begin{pmatrix}
  152. 0&0&1\\
  153. 1&0&0\\
  154. 0&1&0
  155. \end{pmatrix},\begin{pmatrix}
  156. 0&0&1\\
  157. 0&1&0\\
  158. 1&0&0
  159. \end{pmatrix}\right\rbrace
  160. \end{align*}
  161. %poslednji tekst ubaciti x[zavrseno]
  162. Note that the Weyl group $W_n$ has order $n!$ and is simply the symmetric group on $n$ symbols. It is clear that $d^*(gz)=d^*z$ if $g$ is an upper triangular matrix with 1s on the diagonal. This is because the measures $dx_{i,j}$ (with $1\leq i<j\leq n$)are all invariant under translation. It is clear that the differential $d^*z$ is $Z_n-$ invariant where $Z_n\cong \mathbb{R}^x$ denotes the center of $GL(n,\mathbb{R})$.So, without loss of generality,
  163. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement