Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 383, in <module>
- dt_multi.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:26
- *********
- ERROR:root:Input X contains NaN.
- LinearRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 436, in <module>
- lr_multi.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_base.py", line 648, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- LinearRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:26
- *********
- ERROR:root:Input X contains NaN.
- LogisticRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 488, in <module>
- logreg_multi.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_logistic.py", line 1196, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- LogisticRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:26
- *********
- ERROR:root:Input X contains NaN.
- KNeighborsClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 541, in <module>
- knn.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neighbors/_classification.py", line 215, in fit
- return self._fit(X, y)
- ^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neighbors/_base.py", line 454, in _fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- KNeighborsClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:26
- *********
- ERROR:root:Input X contains NaN.
- RandomForestClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 592, in <module>
- rf.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_forest.py", line 345, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- RandomForestClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:26
- *********
- ERROR:root:Input X contains NaN.
- MLPClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 642, in <module>
- mlp.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 749, in fit
- return self._fit(X, y, incremental=False)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 437, in _fit
- X, y = self._validate_input(X, y, incremental, reset=first_pass)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 1089, in _validate_input
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- MLPClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:26
- *********
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 696, in <module>
- bagging_classifier.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 337, in fit
- return self._fit(X, y, self.max_samples, sample_weight=sample_weight)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 472, in _fit
- all_results = Parallel(
- ^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 63, in __call__
- return super().__call__(iterable_with_config)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1863, in __call__
- return output if self.return_generator else list(output)
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1792, in _get_sequential_output
- res = func(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 123, in __call__
- return self.function(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 141, in _parallel_build_estimators
- estimator_fit(X_, y, sample_weight=curr_sample_weight)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:26
- *********
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 747, in <module>
- classifier_j48.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:26
- *********
- ERROR:root:Input X contains NaN.
- GradientBoostingClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 923, in <module>
- multi_gb.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_gb.py", line 429, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- GradientBoostingClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:27
- *********
- ERROR:root:Input X contains NaN.
- GaussianNB does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 1027, in <module>
- NB_model.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/naive_bayes.py", line 267, in fit
- return self._partial_fit(
- ^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/naive_bayes.py", line 428, in _partial_fit
- X, y = self._validate_data(X, y, reset=first_call)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- GaussianNB does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:27
- *********
- ERROR:root:Input X contains NaN.
- AdaBoostClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 1086, in <module>
- AB_model.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_weight_boosting.py", line 126, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- AdaBoostClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:27
- *********
- ERROR:root:Input X contains NaN.
- QuadraticDiscriminantAnalysis does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 1139, in <module>
- qda_multi.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/discriminant_analysis.py", line 890, in fit
- X, y = self._validate_data(X, y)
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- QuadraticDiscriminantAnalysis does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:27
- *********
- ERROR:root:Input X contains NaN.
- BernoulliRBM does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 1594, in <module>
- dbn_model.fit(X_train.iloc[train_index], y_train.iloc[train_index])
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/pipeline.py", line 401, in fit
- Xt = self._fit(X, y, **fit_params_steps)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/pipeline.py", line 359, in _fit
- X, fitted_transformer = fit_transform_one_cached(
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/memory.py", line 353, in __call__
- return self.func(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/pipeline.py", line 893, in _fit_transform_one
- res = transformer.fit_transform(X, y, **fit_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/_set_output.py", line 140, in wrapped
- data_to_wrap = f(self, X, *args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 881, in fit_transform
- return self.fit(X, y, **fit_params).transform(X)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neural_network/_rbm.py", line 402, in fit
- X = self._validate_data(X, accept_sparse="csr", dtype=(np.float64, np.float32))
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 565, in _validate_data
- X = check_array(X, input_name="X", **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- BernoulliRBM does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:29
- *********
- ERROR:root:Input X contains NaN.
- PassiveAggressiveClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 1872, in <module>
- model_passive.fit(X_train_fold_passive, y_train_fold_passive)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_passive_aggressive.py", line 305, in fit
- return self._fit(
- ^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_stochastic_gradient.py", line 683, in _fit
- self._partial_fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_stochastic_gradient.py", line 579, in _partial_fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- PassiveAggressiveClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:31
- *********
- ERROR:root:Input X contains NaN.
- RidgeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 1925, in <module>
- model_ridge.fit(X_train_fold_ridge, y_train_fold_ridge)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_ridge.py", line 1422, in fit
- X, y, sample_weight, Y = self._prepare_data(X, y, sample_weight, self.solver)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_ridge.py", line 1171, in _prepare_data
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- RidgeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:31
- *********
- ERROR:root:Input X contains NaN.
- NearestCentroid does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 1981, in <module>
- model_nc.fit(X_train_fold_nc, y_train_fold_nc)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neighbors/_nearest_centroid.py", line 142, in fit
- X, y = self._validate_data(X, y, accept_sparse=["csr", "csc"])
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- NearestCentroid does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:31
- *********
- ERROR:root:Input X contains NaN.
- LogisticRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 2072, in <module>
- model_cslr.fit(X_train_fold_cslr, y_train_fold_cslr, sample_weight=sample_weights_fold_cslr)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_logistic.py", line 1196, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- LogisticRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:31
- *********
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 2139, in <module>
- bagging_model.fit(X_train_fold_csbc, y_train_fold_csbc)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 337, in fit
- return self._fit(X, y, self.max_samples, sample_weight=sample_weight)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 472, in _fit
- all_results = Parallel(
- ^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 63, in __call__
- return super().__call__(iterable_with_config)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1863, in __call__
- return output if self.return_generator else list(output)
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1792, in _get_sequential_output
- res = func(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 123, in __call__
- return self.function(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 141, in _parallel_build_estimators
- estimator_fit(X_, y, sample_weight=curr_sample_weight)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:31
- *********
- ERROR:root:name 'LGBMClassifier' is not defined
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 2191, in <module>
- lgbm = LGBMClassifier()
- ^^^^^^^^^^^^^^
- NameError: name 'LGBMClassifier' is not defined
- 28 Jun 2024 13:31
- *********
- ERROR:root:Input X contains NaN.
- LinearDiscriminantAnalysis does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 2246, in <module>
- X_train_fold_lda = lda.fit_transform(X_train_fold_lda, y_train_fold_lda)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/_set_output.py", line 140, in wrapped
- data_to_wrap = f(self, X, *args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 881, in fit_transform
- return self.fit(X, y, **fit_params).transform(X)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/discriminant_analysis.py", line 575, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- LinearDiscriminantAnalysis does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:31
- *********
- ERROR:root:Input X contains NaN.
- SGDClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 2391, in <module>
- sgd_fold.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/pipeline.py", line 405, in fit
- self._final_estimator.fit(Xt, y, **fit_params_last_step)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_stochastic_gradient.py", line 894, in fit
- return self._fit(
- ^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_stochastic_gradient.py", line 683, in _fit
- self._partial_fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_stochastic_gradient.py", line 579, in _partial_fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- SGDClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:32
- *********
- ERROR:root:Input X contains NaN.
- ExtraTreesClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 2442, in <module>
- extra_trees_fold.fit(X_train_fold, y_train_fold)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_forest.py", line 345, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- ExtraTreesClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:32
- *********
- ERROR:root:Input X contains NaN.
- GaussianMixture does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 2707, in <module>
- gmm_fold_gmm.fit(X_class_gmm)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/mixture/_base.py", line 186, in fit
- self.fit_predict(X, y)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/mixture/_base.py", line 218, in fit_predict
- X = self._validate_data(X, dtype=[np.float64, np.float32], ensure_min_samples=2)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 565, in _validate_data
- X = check_array(X, input_name="X", **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- GaussianMixture does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:33
- *********
- ERROR:root:Input X contains NaN.
- BernoulliNB does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 2782, in <module>
- bnb_fold_bnb.fit(X_train_fold_bnb, y_train_fold_bnb)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/naive_bayes.py", line 749, in fit
- X, y = self._check_X_y(X, y)
- ^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/naive_bayes.py", line 1201, in _check_X_y
- X, y = super()._check_X_y(X, y, reset=reset)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/naive_bayes.py", line 583, in _check_X_y
- return self._validate_data(X, y, accept_sparse="csr", reset=reset)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- BernoulliNB does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:33
- *********
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 2904, in <module>
- base_model1.fit(X_train_fold_blend, y_train_fold_blend)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:34
- *********
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 3044, in <module>
- base_model_fold_constructive_learning.fit(X_train_fold_constructive_learning, y_train_fold_constructive_learning)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:34
- *********
- ERROR:root:Input X contains NaN.
- RandomForestClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 3120, in <module>
- ais_model_fold_ais.fit(X_train_fold_ais, y_train_fold_ais)
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 3093, in fit
- self.base_model.fit(X_train, y_train)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_forest.py", line 345, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- RandomForestClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:34
- *********
- ERROR:root:Input X contains NaN.
- GaussianNB does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 3182, in <module>
- gbbk_model_fold_gbkk.fit(X_train_fold_gbkk, y_train_fold_gbkk)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/naive_bayes.py", line 267, in fit
- return self._partial_fit(
- ^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/naive_bayes.py", line 428, in _partial_fit
- X, y = self._validate_data(X, y, reset=first_call)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- GaussianNB does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:34
- *********
- ERROR:root:Input X contains NaN.
- SVC does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 3245, in <module>
- gbbk_model_fold_gbkk.fit(X_train_fold_gbkk, y_train_fold_gbkk)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/svm/_base.py", line 192, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- SVC does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:34
- *********
- ERROR:root:Input X contains NaN.
- GaussianNB does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 3306, in <module>
- hnb_model_fold.fit(pd.DataFrame(X_train_fold_hnb), pd.DataFrame(y_train_fold_hnb))
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/naive_bayes.py", line 267, in fit
- return self._partial_fit(
- ^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/naive_bayes.py", line 428, in _partial_fit
- X, y = self._validate_data(X, y, reset=first_call)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- GaussianNB does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:34
- *********
- ERROR:root:Input X contains NaN.
- RFE does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 3436, in <module>
- rfe.fit(X_train_fold_igrf_rfe, y_train_fold_igrf_rfe)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/feature_selection/_rfe.py", line 251, in fit
- return self._fit(X, y, **fit_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/feature_selection/_rfe.py", line 260, in _fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- RFE does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:34
- *********
- ERROR:root:Input X contains NaN.
- FastICA does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 3502, in <module>
- X_train_ica_fold = ica_fold.fit_transform(X_train_fold_ica)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/_set_output.py", line 140, in wrapped
- data_to_wrap = f(self, X, *args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py", line 708, in fit_transform
- return self._fit_transform(X, compute_sources=True)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py", line 558, in _fit_transform
- XT = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 565, in _validate_data
- X = check_array(X, input_name="X", **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- FastICA does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:34
- *********
- ERROR:root:Input X contains NaN.
- LogisticRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 3575, in <module>
- lasso_model_fold.fit(X_train_fold_lasso, y_train_fold_lasso)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/linear_model/_logistic.py", line 1196, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- LogisticRegression does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:34
- *********
- ERROR:root:Input X contains NaN.
- KNeighborsClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 3639, in <module>
- meta_knn_model_fold.fit(X_train_fold_meta_knn, y_train_fold_meta_knn)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 337, in fit
- return self._fit(X, y, self.max_samples, sample_weight=sample_weight)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 472, in _fit
- all_results = Parallel(
- ^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 63, in __call__
- return super().__call__(iterable_with_config)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1863, in __call__
- return output if self.return_generator else list(output)
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1792, in _get_sequential_output
- res = func(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 123, in __call__
- return self.function(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_bagging.py", line 144, in _parallel_build_estimators
- estimator_fit(X_, y[indices])
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neighbors/_classification.py", line 215, in fit
- return self._fit(X, y)
- ^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/neighbors/_base.py", line 454, in _fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- KNeighborsClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:34
- *********
- ERROR:root:Input X contains NaN.
- TSNE does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 3706, in <module>
- X_train_tsne_fold_tsnerf = tsne.fit_transform(X_train_fold_tsnerf)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/manifold/_t_sne.py", line 1119, in fit_transform
- embedding = self._fit(X)
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/manifold/_t_sne.py", line 854, in _fit
- X = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 565, in _validate_data
- X = check_array(X, input_name="X", **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- TSNE does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:34
- *********
- ERROR:root:Input X contains NaN.
- PCA does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 3871, in <module>
- X_train_fold_pca = pca_fold_pca.fit_transform(X_train_fold_pca)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/_set_output.py", line 140, in wrapped
- data_to_wrap = f(self, X, *args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/decomposition/_pca.py", line 462, in fit_transform
- U, S, Vt = self._fit(X)
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/decomposition/_pca.py", line 485, in _fit
- X = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 565, in _validate_data
- X = check_array(X, input_name="X", **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- PCA does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:34
- *********
- ERROR:root:Input X contains NaN.
- SVC does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 3939, in <module>
- gbbk_model_fold_gbkk.fit(X_train_fold_gbkk, y_train_fold_gbkk)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/svm/_base.py", line 192, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- SVC does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:34
- *********
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 4142, in <module>
- best_params = simulated_annealing(objective_function, space)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 4108, in simulated_annealing
- current_score = objective_function(current_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 4087, in objective_function
- dt_model.fit(X_train, y_train)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:35
- *********
- ERROR:root:Input X contains NaN.
- SVC does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 4217, in <module>
- svm_model_fold.fit(X_train_fold_svm, y_train_fold_svm)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/svm/_base.py", line 192, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- SVC does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:35
- *********
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 4286, in <module>
- stacking_classifier.fit(X_train_fold_stacking, y_train_fold_stacking)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_stacking.py", line 660, in fit
- return super().fit(X, y_encoded, sample_weight)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_stacking.py", line 209, in fit
- self.estimators_ = Parallel(n_jobs=self.n_jobs)(
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 63, in __call__
- return super().__call__(iterable_with_config)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1863, in __call__
- return output if self.return_generator else list(output)
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1792, in _get_sequential_output
- res = func(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 123, in __call__
- return self.function(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_base.py", line 46, in _fit_single_estimator
- estimator.fit(X, y)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:35
- *********
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 4352, in <module>
- stacking_model.fit(X_train_fold_stacking_dcae, y_train_fold_stacking_dcae)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_stacking.py", line 660, in fit
- return super().fit(X, y_encoded, sample_weight)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_stacking.py", line 209, in fit
- self.estimators_ = Parallel(n_jobs=self.n_jobs)(
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 63, in __call__
- return super().__call__(iterable_with_config)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1863, in __call__
- return output if self.return_generator else list(output)
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1792, in _get_sequential_output
- res = func(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 123, in __call__
- return self.function(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_base.py", line 46, in _fit_single_estimator
- estimator.fit(X, y)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/pipeline.py", line 405, in fit
- self._final_estimator.fit(Xt, y, **fit_params_last_step)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:35
- *********
- ERROR:root:Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 4512, in <module>
- voting_clf.fit(X_train_fold_voting, y_train_fold_voting)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_voting.py", line 346, in fit
- return super().fit(X, transformed_y, sample_weight)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_voting.py", line 81, in fit
- self.estimators_ = Parallel(n_jobs=self.n_jobs)(
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 63, in __call__
- return super().__call__(iterable_with_config)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1863, in __call__
- return output if self.return_generator else list(output)
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/joblib/parallel.py", line 1792, in _get_sequential_output
- res = func(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/parallel.py", line 123, in __call__
- return self.function(*args, **kwargs)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_base.py", line 46, in _fit_single_estimator
- estimator.fit(X, y)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 889, in fit
- super().fit(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/tree/_classes.py", line 186, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 579, in _validate_data
- X = check_array(X, input_name="X", **check_X_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- DecisionTreeClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:35
- *********
- ERROR:root:Input X contains NaN.
- GradientBoostingClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- Traceback (most recent call last):
- File "/home/u/Music/All_65_ML_Code/ML_65_Algo_k_fold_Stratified_1pc.py", line 4575, in <module>
- gbt_model.fit(X_train_fold_gbt, y_train_fold_gbt)
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/ensemble/_gb.py", line 429, in fit
- X, y = self._validate_data(
- ^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/base.py", line 584, in _validate_data
- X, y = check_X_y(X, y, **check_params)
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 1106, in check_X_y
- X = check_array(
- ^^^^^^^^^^^^
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 921, in check_array
- _assert_all_finite(
- File "/home/u/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py", line 161, in _assert_all_finite
- raise ValueError(msg_err)
- ValueError: Input X contains NaN.
- GradientBoostingClassifier does not accept missing values encoded as NaN natively. For supervised learning, you might want to consider sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept missing values encoded as NaNs natively. Alternatively, it is possible to preprocess the data, for instance by using an imputer transformer in a pipeline or drop samples with missing values. See https://scikit-learn.org/stable/modules/impute.html You can find a list of all estimators that handle NaN values at the following page: https://scikit-learn.org/stable/modules/impute.html#estimators-that-handle-nan-values
- 28 Jun 2024 13:35
- *********
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement