Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- \documentclass{article}[pstricks,border=8pt,12pt] \usepackage[utf8]{inputenc}
- \usepackage{geometry} [a4paper,lmargin=1.5cm,rmargin=1.5cm,Botton=1.5cm,top=1.75cm] \usepackage{graphicx}
- \usepackage{wrapfig}
- \usepackage{color}
- \usepackage{amsmath}
- \usepackage[T1]{fontenc}
- \usepackage{amsfonts}
- \usepackage{amssymb}
- \usepackage{mathrsfs}
- \usepackage{cancel}
- \usepackage[all]{xy}
- \usepackage{pstricks}
- \usepackage{pst-all}
- \usepackage{mathtools}
- \newcommand{\ihat}{\mathbf {\hat \imath}}
- \newcommand{\jhat}{\mathbf {\hat \jmath}} \newcommand{\vect}[1]{\mathbf #1}
- \usepackage{pst-solides3d}
- \usepackage{fancybox}
- \usepackage{tikz}
- \usepackage{tikz-3dplot}
- \usepackage{gnuplottex}
- \tikzset{flippedeventlabel/.append style={align=center}} \usetikzlibrary{matrix.skeleton} \usetikzlibrary[shapes,arrows,positioning,fit,backgrounds,intersections,shadows,calc,shadings]
- \usetikzlibrary{positioning}
- \usetikzlibrary{decorations.text} \usetikzlibrary{decorations.pathmorphing} \pgfdeclarelayer{background layer}
- \pgfdeclarelayer{foreground layer}
- \pgfsetlayers{background layer,main,foreground layer}
- %\usetikzlibrary{datavisualization.formats.functions} \usepackage{pgf-pie}
- \usepackage{color,colortbl}
- \usepackage{lscape}
- \usepackage{pgfplots}
- \pgfplotsset{compat=newest}
- \usetikzlibrary{datavisualization} \usetikzlibrary[shapes,arrows.meta,positioning,fit,backgrounds,intersections,shadows,calc,datavisualization.formats.functions] \usetikzlibrary{patterns} \usepackage[colorlinks=true,linkcolor=black,citecolor=black,filecolor=magenta,urlcolor=blue]{hyperref}
- %Paquete de estilo de referencias
- \begin{document}
- %\pagecolor{blue!55!green!90}
- %\pagecolor{red!15}
- \pagecolor{black}
- \colorlet{AnguloH}{green!50!black} \colorlet{AnguloV}{magenta} \colorlet{Cesferica}{red} \colorlet{Ccilindrica}{blue}
- %\tikz
- %{\draw (0,0) node[right,fill=black,text width=7.5cm,rounded corners=10pt]
- %{
- %\begin{center}
- %\textcolor{white}{\textbf{Seguridad en Redes y Cifrado De Texto}}\\
- %\textcolor{yellow}{Nimrod Rodríguez}\\
- %\href{ENLACE WEB}{\underline{\textcolor{white}{enlace:} \textcolor{green}{Código \LaTeX} }}
- %\end{center}
- %}}
- %Begin Hankel contour
- \begin{center}
- \tdplotsetmaincoords{60}{125}
- \begin{tikzpicture}[scale=0.7,tdplot_main_coords, information text/.style={rounded corners,inner sep=2ex}]
- %\tdplotsphericalsurfaceplot[smooth]{24}{24} {2}{black}{green}
- %\draw (6,4,13)node[white, below=1cm] {\bf\LARGE{Trayectoria de Hankel para evaluar}};
- %\draw (6,4,13)node[white, below=2cm] {\bf\LARGE{$\mathsf{\Gamma(z)}$ en el plano complejo $\mathsf{\mathbb{C}}$}};
- %{\draw[color=orange,ultra thick,<->] (-9.5,0,-2) -- (9.5,0,-2) node[white,anchor=north east]at(9,1.5,-2){\textcolor{orange}{\huge{$X$}}};} {\draw[color=yellow,ultra thick,<->] (0,-7.5,-2.3) -- (0,7.5,-2.3) node at (1,6,-2.3)[white,anchor=north west]{\huge{$\textcolor{yellow}{Y}\textcolor{yellow!55}{\ihat}$}};} {}
- %\draw [->, white,dashed,very thick] (11,0.4,-2)--(1,0.4,-2);
- %\draw node [white, right] at (5,1.5,-2) {\Large{$\mathsf{C_1}$}};
- %\tdplotdrawarc[white,->,dashed,very thick]{(0,0,-2)}{0.9}{25}{335}{}{};
- %\draw node [white] at (-2,1.5,-2) {\Large{$\mathsf{C_2}$}};
- %\draw [->, white,dashed,very thick] (1,-0.4,-2)--(11,-0.4,-2);
- %\draw node [white, right] at (5,-2.5,-2) {\Large{$\mathsf{C_3}$}};
- %\draw (6,1,-3)node[white, below=2cm] {\bf\large{Acercándose al \textit{O}rigen}};
- %\draw (6,4,-3)node[white, below=2cm] {\bf\huge{$\mathsf{C_1 :}$ $\mathsf{u = x e^{i\pi}}$, $\ \infty > x \geq \delta$}};
- %\draw (6,2.8,-5.2)node[white, below=2cm] {\bf\large{Rodeando el \textit{O}rigen contra-reloj}};
- %\draw (6,4,-6)node[white, below=2cm] {\bf\huge{$\mathsf{C_2 :}$ $\mathsf{u = \delta e^{i\theta}}$, $\ -\pi < \theta < \pi$}};
- %\draw (6,1,-9)node[white, below=2cm] {\bf\large{Alejándose del \textit{O}rigen}};
- %\draw (6,4.5,-9)node[white, below=2cm] {\bf\huge{$\mathsf{C_3 :}$ $\mathsf{u = x e^{-i\pi}}$, $\ \delta \leq x < \infty $}};
- %End Hankel contour
- %\fill[white] (0,0,2) circle (2pt);
- %\fill [white](0,0,-2) circle (2.5pt);
- \draw [xshift=-0.5cm] node [below= 5cm,text width=9cm, information text,scale=1.5]
- {
- {\begin{minipage}{7cm}\textcolor{white}{\textbf{La aproximación parte de la relación binomial $\mathsf{\displaystyle{\mu\ =\ np}}$
- y toma como objetivo la forma $\mathsf{\displaystyle{p\ =\ \frac{\mu}{n}}}$} \textbf{
- Con esto en mano, consideramos la familia de funciones binomiales, con $\mathsf{\displaystyle{n \rightarrow \infty :}}$
- $$\mathsf{\displaystyle{f_n(x)=\frac{n!}{x!(n-x)!}\left(\frac{\mu}{n}\right)^x\left(1-\frac{\mu}{n}\right)^n\left(1-\frac{\mu}{n}\right)^{-x} }}$$ Y para obtener más explícitamente el límite, reescribimos como:
- $$\mathsf{\displaystyle{f_n(x) = \frac{\mu^x}{x!}\frac{n!}{n^x(n-x)!}\left(1-\frac{\mu}{n}\right)^n \left(1-\frac{\mu}{n}\right)^{-x}}}$$
- Expresión que permite verificar el límite, como el producto de los límites de tres sucesiones como sigue:
- $$\mathsf{\displaystyle{\lim_{n \to \infty}\frac{n!}{n^x (n-x)!} = 1}}$$
- $$\mathsf{\displaystyle{\lim_{n \to \infty}\left(1 -\frac{\mu}{n}\right)^n = e^{-\mu}}}$$
- $$\mathsf{\displaystyle{\lim_{n \to \infty}\left(1 -\frac{\mu}{n}\right)^{-x} = 1}}$$
- Así que podemos escribir:
- $$\mathsf{\displaystyle{\lim_{n\to\infty}f_n(x) = f^*(x) = \frac{\mu^x\ e^{-\mu}}{x!}}}$$
- Expresión que es justamente la distribución de Poisson.}}
- \end{minipage}};
- };
- \end{tikzpicture}
- \end{center}
- %\renewcommand
- %\refname{Bibliografía}
- %\begin{thebibliography}{3}
- %\bibitem{Stinson2019} STINSON, Douglas R. \& PATERSON, Maura B. \underline{Cryptography
- %Theory and Practice.}
- %Fourth Edition CRC Press
- %Taylor \& Francis Group
- %6000 Broken Sound Parkway NW, Suite 300.
- %Boca Raton, FL 33487-2742
- %© 2019 by Taylor \& Francis Group, LLC
- %\bibitem{tanen2003} TANENBAUM, Andrew S.\& WETHERALL, David J. \underline{Redes de Computadoras.} © Pearson-Prentice Hall, Educación. México 2003.
- %\end{thebibliography}
- \end{document}
Add Comment
Please, Sign In to add comment